
AD-A2 4 5 339

November 1991

TACTICAL COMMUNICATIONS NETWORK
MODELLING AND RELIABILITY ANALYSIS:

AN OVERVIEW

1OTI
ANJAN

92-01947I 11111 1111 |111 111111111111111 1111 ill 1

US Army Laboratory Command
USA SURVIVABILITY MANAGEMENT OFFICE
Adelphi, MD 20783-1145

* Ap*ffcwoi br pnb!Wlc mq~e
kwfltiwg UaIba*.d

JC-2091-GT-F3

TACTICAL COMMUNICATIONS NETWORK
MODELLING AND RELIABILITY ANALYSIS:

AN OVERVIEW

November 1991

prepared by

J. S. Lee Associates, Inc.
Suite 609

451 Hungerford Drive
Rockville, Maryland 20850

under subcontract to

Defense Research Technologies, Inc.
354 Hungerford Drive

Rockville, Maryland 20850

for

Survivability Management Office
U. S. Army LABCOM
2800 Powder Mill Road

Adelphi, Maryland 20783

Contract DAAL02-89-C-0040

Fo~rn ApprovedREPORT DOCUMENTATION PAGE OPMM. 0704-018

P~*bc '.0"I'v b'0 '~pa, ."CCo, C' r 0 , ~ ~ ~ - '.to.e *'dvG F' w ' to rWiCcto" CeM0,1 cumS~ %.63 ,wc t w- a-.~
M r t.0 ot 06015 ff ~ 'O-Vv ev cocl V"rC~ 50 '. ' t LC4 ' po I'tr VOOO ~' W V ',cFN r- cofs"WI 0 '0"'41)I PC1.' l C0's

.6 icaic 711 0.'1& Ic 04as i".bl' -eA0.'Z I . 7-,', at t'o, .o O P.0o.'s je 5 w § W ' - L-~ bq .v '? .2 rl~ h &22~- £C.w

rv ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~P 1ft" 01 70.4.0C1&9Aa88A-w "o,- w cBke 2>-

AGENC.,Y USE ONLY ,'LeAvf Sit) 2 REPDm DA-E 3 REPO2rT TYPE AND DATES COVERED

NOVEMBER 1991 Final

4 TITLE AND SUBTrrLE 5 FUNDING NUMBERS

Tactical Communication Network Modeling and Reliability Analysis:
An Overview

6 AUTHOr(S)

James J. Kelleher

7 PERCORMNG ORGANIZA1-0N NAYE(S. AND ADDRESS ES) 8 PERFORMING ORGANIZATION
REPORT NUMBER

J.S. Lee Associates Incorporated, Suite 609, 451 Hungerford Drive, jC-2091-GT-F3

Rockville, MD 20850

g SPONSORING/MONITOR!NG AGENCY NAME(S) AND ADDRES.S(ES) 10 SPONSORINGIMONITORING AGENCY

U.S. Army Survivability Management Office REPORT NUMBER

Attn: SLCSM-C31
2800 Powder Mill RD.
Adelphi, MD 20783-1145

11 SUPPLEMENTARY NOTES

12a DIS'RIBL'TION/AVA.ABILTY STATEMENT '2t DISTRIB.71ON CODE

Approved for public release, distribution is unlimited

3 ABSTRACT .Maxitnum ?0C woras)

This report summarizes a survey of the literature on network reliability problems that arise in model-
ing communication networks and includes brief tutorials on the graph-theoretic concepts. Emphasis
is placed on mobile communications in which the underlying network topology is subject to wide
variations in the local environment, as opposed to network synthesis and design. The analysis of

communication networks is primarily based on mathematical theory of graphs and its development of

efficient algorithms to take advantage of parallel or concurrent data processing. The main thrust of
graph theory in communications is the notion of the connectivity of the graph and this report concen-
trates on this subject area.

•4 5.JBjETTERMS 15 NUMBER OF PAGES

89
Network Reliability Analysis, Tactical Communication Modeling, 16 PRiCE CODE
ConnectivitN Gr Ttwork Modeling
1 SECRIT CLAS jrICA(10 'S SECJRI' CLASSICATON SECjRITY C LASS,F0CA ION 2C L:.:TATION C

,
ABS' ACT

OF REPORT Cc- T4!S PX&cj OZ ABSTRACT

Unclassified Uncia-ified Unclassified SAR
''P'*I- " ?' 29 Z_-

NSN
I8.5osl-c

Contents

TACTICAL COMMUNICATIONS NETWORK

MODELLING AND RELIABILITY ANALYSIS:

AN OVERVIEW

1. Introduction ... 1

2. Graphs and Networks .. 5

2.1 Basic Definitions .. 5

2.2 Directed Graphs ... 7

2.3 W eighted Graphs .. 7

2.4 Graph Representations ... 8

3. Graph Connectivity ... 11

3.1 Com ponents of a Graph ... 11
3.2 M easures of Connectivity .. 12

3.3 Classical Results on Connectivity ... 14
3.4 Connectivity in Directed Graphs .. 14

3 .5 T rees 16

4. Graph Algorithm s .. 19

4.1 Algorithm Com plexity .. 19
4.2 NP-Hard and NP-Com plete Problem s ... 20

4.3 Graph Traversals .. 21

4.4 Exam ples .. 23
4.5 Other Graph Algorithm s .. 29

5. Probabilistic Networks and Reliability ... 31

5.1 M odeling of Comm unications Networks ... 31 -

5.2 Reliability .. 32

5.3 Special Cases .. 33

5.4 Reliability Algorithms ... 3 4
,r

1) 1'3

Ill F: r >

Contents

6. Calculation of Reliability ... 37

6.1 State Space Enum eration .. 37

6.2 Inclusion-exclusion M ethods .. 39

6.3 Disjoint Sum s .. 43

6.4 Dotson's M ethod .. 45

6.5 Factorization M ethods ... 50

6.6 Approxim ations and Sim ulations ... 56

7. Other Perform ance M easures ... 61

7.1 Connectivity Factors ... 62

7.2 Network Diam eter .. 64

7.3 M easures of Vulnerability ... 67

8. References ... 71

8.1 Graph Theory - General References ... 71

8.2 Algorithm s for Graphs and Networks ... 71

8.3 Com putational Com plexity ... 73

8.4 NP-Hard and NP-Complete Problem s .. 74

8.5 Dependent Failure Events ... 75

8.6 Network Reliability - Special Cases ... 75

8.7 Survey Articles and Bibliographies ... 76

8.8 Parallel Graph Algorithm s .. 78

8.9 State Space Enumeration ... 78

8.10 Inclusion-Exclusion M ethods ... 79

8.11 Disjoint Sums and Boolean Minimization 80

8.12 Dotson's M ethod .. 81

8.13 Factorization M ethods ... 81

8.14 Bounds and Approxim ations .. 82

8.15 Sim ulations and M onte Carlo M ethods .. 83

8.16 Connectivity Factors ... 84

8.17 Graph Diameter and Connectivity ... 85

8.18 Other M easures of Vulnerability ... 86

iv

Introduction

1. INTRODUCTION

This report summarizes a survey of the literature on network reliability problems

that arise in modelling communication networks and includes brief tutorials on the pre-

requisite graph-theoretic concepts. Emphasis is placed on mobile communication

systems in which the underlying network topology is subject to wide variations in the

local environment, as opposed to questions of network synthesis and design. For the

latter problems, parts of the network configuration (such as the location of the

transmitting and receiving nodes and the selection of the communication links) are at

least to some extent free to be chosen by the system designer. In mobile command and

control communication (C3) systems this is not the case, as communication links may

be limited to line-of-sight paths between nodes that are constantly changing position.

Moreover, in a hostile environment the network topology is subject to link and node

outages due to battle damage or enemy jamming.

The analysis of communication networks is primarily based on the mathematical

theory of graphs, which has found wide applications to many different areas. This is a

major branch of combinatorial mathematics that has been studied for centuries, and the

research literature in the field is enormous. Recent activity in graph theory, however, is

more intensive than ever. The emphasis is on the development of efficient algorithms,

and many of the most important results here have been discovered only in the past

decade. This aspect of the theory is now more important than ever because of the

current importance of parallel or concurrent data processing.

The main aspect 'of graph theory in communications is the notion of the

connectivity of a graph. and this report concentrates primarily on this aspect of the

subject. For a graph to be connected the existence of a path from a given node to any

other node is required, and this depends on the details of the node-to-node configuration

that describes the graph. This is a completely deterministic question which can be

quickly answered once the graph has been specified and represented in a form

appropriate for processing in a digital computer. There are a number of efficient

algorithms for determining graph connectivity. generally implemented by a systematic

traversal of the graph beginning at a specified initial node. More quantitative versions

describe how the graph can become disconnected due to the loss or deletion of some of

its nodes or edges.

Introducthon

Of more importance in modern communication theory is the idea of a probabilistic
network, which is simply a graph in which the individual nodes and/or edges are subject

to failure. The general assumption here is that the failure probabilities are known and

the individual component failures are statistically independent. (This second
assumption is frequently unrealistic, but is necessary to simplify the mathematical

analysis of the networks.) In this setting the underlying (deterministic) graph may

itself be connected, but the unreliability of its components give rise to failure events for

which connectivity is lost. It is the overall probability of such failures that measure the

reliability of the network.

Unfortunately, the exact calculation of this type of unreliability measure is
generally a computationallv intractable problem and can be carried out only for

networks of relatively limited size (e.g., 20-25 nodes). Over the past few years a

number of approaches to this problem have been considered, and these methods are

constantly being modified and improved. The most important of these are described,

along with their relative advantages and disadvantages, but they are all subject to the
computational difficulty mentioned above. That is, as the size of the network under

consideration grows, the demands made on the available computational resources (run

time or storage capability) become insurmountable. This seems to be inherent in the

reliability problem itself, not a defect of the particular algorithm being applied to its

solution.

While it is possible to restrict the node-edge configuration of the underlying graph

to such an extent that efficient reliability algorithms do become available for such

networks, the constraints involved are so severe as to preclude their use in modeling

mobile radio networks. Thus future algorithmic improvements may allow the

computation of reliability for ever larger networks, but the combinatorial complexity of

the problem will eventually overwhelm the capability of any computing equipment

being used.

For this reason a number of researches have been devoted to developing algorithms

which would give reasonable bounds on network reliability. While these have met with

some success, in general the intractability of the computation is still present and the

usefulness of most of these methods to general network analysis is questionable.
Another possibility is that of simulating the network success/failure events by Monte

Carlo methods. although these have slow convergence properties. A more promising

approach is the development of parallel processing and graph algorithms to be

implemented on parallel computers. This area is quite new and much more work

9

Infroduchzon

remains to be done here.

There are many other graph-invariant properties that are closely related to

questions of graph vulnerability or survivability, and a discussion of these makes up the

concluding section. It is not clear at this point which of these are most applicable to

mobile communication networks. although many have proved to be useful in other

areas. These quantities are also the objects of much contemporary research, including

the search for effective algorithms for their calculation.

3

Introduction

G = G(V, E) a graph (directed or undirected)
V(G) set of nodes (vertices) of G
E(G) set of edges (links) of G

I S I number of elements of a set S
P I V(G) I, number of nodes
q E(G) I, number of edges
KP complete graph on p vertices
deg(v) degree of vertex v E V(G)
6(G) minimum degree
A(G) maximum degree
Diam(G) diameter of G
dist(u, v) hop distance between nodes u and v
Ngbd(v) set of vertices adjacent to node u
K(G) vertex connectivity of G
A(G) edge-connectivity
c(G) number of components of G
G - subgraph with edge e deleted

G/e subgraph with edge e contracted
G - v subgraph with node v deleted
[x] smallest integer n > x (ceiling)

[xi largest integer n < x (floor)

GLOSSARY OF NOTATION USED

4

Graphs and Networks

2. GRAPHS AND NETWORKS

Communication networks are usually modelled by graphs or digraphs where the

nodes or vertices of the graph are the transmitting/receiving facilities (possibly used
simply as relays), while the edges of the graph indicate the possibility of communication
between nodes. In this section we discuss the basic graph-theoretic concepts of most

interest and indicate how these apply to modelling communication networks. The
literature in graph theory is quite extensive and references [1-10] give a number of

recent texts that introduce the field at various levels of sophistication. In particular,

the book by Harary [7] has become a standard since its original publication in 1969.

The number of interesting quantities that are associated with a graph is very large,
but we limit ourselves to those with immediate application to the possibility of
communicating within the graph and to measuring its performance and reliability. We

also indicate how graph data can be structured in a digital computer. There are many
ways of doing this. some of which are more appropriate to mobile communication

networks than others. Examples of these representations are given for a simple graph.

2.1 BASIC DEFINITIONS

A graph G = G(V. E) consists of a set V = V(G) of p > 1 nodes, or vertices.,
together with a set E = E(G) of q > 0 unordered pairs of distinct nodes. We say that G

has order p and size q and refer to G as a (p, q)-graph. The elements of E are the
edges. or links, of G. An edge c ={u. v} is said to join u and v in G, and we write this
as e = uv. This definition excludes self-loops (an edge joining a node to itself) and

parallel edges (two or more edges joining a pair of vertices).

The edge iiv is said to be incident to the nodes i and v, which are adjacent nodes,

or neighbors. Two edges are said to be adjacent if they are incident to a common node,

a node is isolated if no edge is incident to it. and we define

Ngbd(,,) a Ir :. itc E E(G)}. (2.1)

the set of neighbors of node u. The cornplete graph on p nodes, denoted by K has

q = p(p - 1)/2 so that every pair of distinct nodes is adjacent.

The deqree of a node r E V(G). deg('), is the number of edges incident to it, and it

Graphs and Networks

is always true that

deg(v) = 2q. (2.2)
v E V(G)

We also define the minimum and maximum degrees as

6(G) Q=Min{deg(v): v E V(G)} (2.3)

A(G) Max{deg(v):v E V(G)}.

The graph is said to be k-regular if 6(G) = A(G) = k. (2.4)

Two graphs are isomorphic if there exists a one-one correspondence between their

node sets that preserves adjacency. An invariant of a graph (G) is a quantity associated

with G which has the same value for all graphs isomorphic to G. Thus p, q, b, and A

are graph invariants, as is the property of being k-regular, 0 < k < p. Graphs are

generally represented by point-line diagrams- the nodes given by distinct points and

the presence of an edge joining two nodes indicated by a line segment or arc between

them. Figure 2.1 shows such diagrams for a pair of isomorphic graphs. (The node

correspondence is given by 1-*2' ,2-1'. 3-,+3' 4-+5', and 5--+4'.)

2'

1' 5'

33

4'

FIGURE 2.1 G, AND G, ARE ISOMORPHIC

A subgraph of G is a graph all of whose edges and nodes are edges and nodes,

respectively. of G. It is a spanning su bgraph if it contains all the nodes of G. Given a

subset V0 C V(G) of nodes. the subgraph Go of G generated by V 0 is the largest

subgraph of G with node set V'. (That is. two nodes in V o are joined in Go if and only

if they are joined in G.)

Also. for any node set V0 C V(G) we define G - V0 to be the largest subgraph of

G which contains no nodes belonging to V0. (Note that it cannot contain any edges of

6

Graphs and Networks

G which are incident to a node in I0 -if an edge belongs to a graph then the vertices
which it joins must belong to the node set of that graph.) Similarly, for a set of edges
Eo C E(G), G - E o denotes the largest subgraph of G which has no edges in Eo. Finally,
since any (p, q)-graph G may be thought of as a subgraph of K, we can consider
enlarging G by adjoining edges-this will give the smallest subgraph of 1K7 which

contains G and the adjoined edges.

2.2 DIRECTED GRAPHS

A directed graph. or digraphi. is defined exactly as a graph G = G(V.E) except
that the edges E = E(G) now consist of ordered pairs of distinct nodes. We still write

C=(I. U) E E(G) as e = ac, but it is now considered as a link from it to v. Its presence
in E(G) does not imply that the opposite link c = vu is also in E(G). If this is always
the case then we say that G is a symmetric digraph. and asymmetric if it is never the
case. Associated with G is the underlying graph G, of G obtained by ignoring the

directions of the edges in the digraph.

Given a node r'E I"(G) we define the indegrece of c to be the number of nodes
it E V(G) for which utt E E(G). Similarly. the outdegree of v is the number of edges in
E(G) which go from t to some other node it e V(G). The deg. ee of L, is the sum of the

indegree and outdegree. and we always have

T indeg(v) = Y outdeg(v) = q. (2.5)
u E V(G) E '(G)

The comnplete digraph on p nodes has q = p(p -1) edges. one from each node to
every other node. We will continue to denote it by K-- it should be clear from the
context whether we are referring to undirected or directed graphs.

Most of the definitions given previously for undirected graphs go over to directed
graphs without change. The major differences between the two types are in their
connectivity properties. which will be discussed later in this report. References [8] and
[101 are devoted exclusively to digraphs. but all of the other texts cited for graph theory

discuss them to some extent.

2.3 WEIGHTED GRAPHS

A weighted graph is simply a graph G G(I'. E) together with a icight fanction

Graphs and Networks

t': E(G)--+1. where w(e) is the weight assigned to the edge e E E(G). Typically we
shall assume that w(c) _> 0 for all edges e. In applications this might represent the cost

of a link in a transportation network or the capacity of a communications channel in a

radio network.

It is also possible to consider graphs with weights assigned to the nodes t E V(G),

representing the costs associated with storage locations in a transportation network or
the capacity of central processing nodes in a data network. In our applications we shall

generally consider only functions defined on the edges of the graph.

Similarly. the definition of a weighted digraph is the same. The main point to note
here is that the weight. of an edge between two nodes will depend on the direction of the
edge. Even if the digraph is assumed to be symmetric, this is not to be required of the

weight function. That is. if u, v E V(G) are such that the edges e = uv and e' = vu both

belong to E(G), it is not necessarily true that w(e) = w(e').

Thus, in a t:ansportation system it is less expensive to move material downstream
than to oppose the current in the opposite direction. Our main interest will eventually

be in communication networks given by a symmetric digraph with a weight function

P:E(G)-+[O. 1]. Here P(c) represents the probability that the communication link

e E E(G) is operational. and this probability must be allowed to depend on the direction

of the link in order to model such things as local jamming, directional antennas for

transmission and/or reception, etc.

2.4 GRAPH REPRESENTATIONS

To represent a graph in a computer the data must be organized in the machine so

as to reflect the relations among the nodes V(G) as specified by the collection of edges

E(G). One way to do this is to use the so-called adjacency matrix A = A(G), a p x p

matrix defined as I ifi. jeE(G)

a,j = otherwise. (2.6)

Here the nodes have been mapped over to the set of integers {1.p}. (That is. the i-th

node read into the machine is assigned to the integer i.) This matrix has zeros on the
main diagonal (no self-loops) and is symmetric if G is a graph or a symmetric digraph.

(That is. (,) = a,, for all 1 < i.j < q . so only q(q - 1)/2 matrix entries need to be
stored.)

S i • i iiii i il

Graphs and Networks

Other variations of this tecbnique are possible. If it is desired to keep track of the
edges, then the ij-entry of .4 would be the number of the edge e = ii in the order in
which it appeared in the input. Also, for a weighted graph the matrix could contain the
weights of the corresponding edges. Graph-processing algorithms are discussed in more
detail below and in references [11-28], but it is important to note that the way a graph
is represented in the computer can have a large effect on the efficiency of an algorithm.

For example, one problem with the adjacency matrix representation is that if there
are relatively few edges in the graph (as compared with the complete graph Kp), then
most of the entries in A will be zero, thereby using a lot of unnecessary computer
storage. In this case one would prefer to use the so-called adjacency list representation,
where each vertex i is associated with a linked list containing the vertices which are
adjacent to it. (For a digraph we would maintain two sets of lists, one for nodes
adjacent to an edge from i and the other for nodes adjacent to an edge going to i.) For
dense matrices, however, where the number of edges is close to that for KP, the matrix

representation is to be preferred.

Other considerations are also important. If we consider G as a subgraph of KP and
enlarge it by adjoining edges, or decrease it by removing some edges and/or nodes, it is
much easier to reflect such changes in the adjacency matrix than to update the linked
lists of vertex connections. However, the matrix representation can be costly in
processing the graph data. In many cases we are given a vertex v E V(G) and are faced
with the problem of selecting some subset of Ngbd(v), the neighboring nodes. The
adjacency lists are clearly superior for such a purpose, whereas in the adjacency matrix
we would have to scan across a whole row (or column) of A which may consist almost

entirely of zeros.

Nevertheless, we shall prefer to use the matrix representation. The main reason for
this is our interest in modelling communication networks in widely varying
environments. Under benign conditions with most nodes within line-of-sight of one
another and with no hostile activity, almost all of the links will be operational and the
linked list adjacencies have no storage advantage, but will exact a higher cost in
overhead. Under jamming conditions and more stressful environments some links may
drop out or be disabled, but the adjacency matrix is more easily updated to take
account of such changes. The penalty for use of this representation is that one must use
graph processing algorithms which are inefficient in dealing with sparse graphs. These
various representations are shown for an example graph in Figure 2.2.

9

Graphs and Networks

Example Graph:

8 Vertices
10 Ed es (vs 28 edges in the complete graph)

Edge Listing:

1 21 41 5_ r
15

2 3
2 6
3 4
3 7 8,
5 65 878 4 3

Adjacency Matrix:

01011000
10100100
01010010
10100000
10000101
01001000
00100001
00001010

Adjacency Lists:

Node Ngbd(Node)

1 245
2 136

3 247
4 13
5 168
6 25

7 38
8 57

FIGURE 2.2 GRAPH REPRESENTATIONS

10

Graph Connectivity

3. GRAPH CONNECTIVITY

Reliability in communication networks is a measure of the ability of nodes of the

network to establish commanication with one another, either directly or through relay

facilities. In particular, a communication path must exist between any two nodes of the

network, for otherwise one part of the network would be isolated from another. This is

determined by the connectivity of the underlying graph or digraph used to model the

network. Moreover, we would like to have a large number of alternative paths between

nodes so that the failure of a few network components would not result in such isolated

nodes.

This section defines the basic notions of connectivity in graphs and digraphs and

discusses some graph invariants to quantify network connectivity and vulnerability.

Network reliability is a difficult problem because it is concerned with the overall global

performance of the network., while the underlying graph is defined explicitly only in

terms of the local interconnections among a large number of components. Connectivity

is an extremely important property of a graph and any introduction to graphs will

include some discussion of it. For its relationship to networks see the text by Colbourn

[14], which is the best available reference to this subject.

3.1 COMPONENTS OF A GRAPH

A walk in a graph G is an alternating sequence of nodes and edges

I 0 , e1, "I, e2, n_ , en, u,1 (3.1)

where Ck = Vk - Vk for 1 < k < i. It is said to connect vo with V, and has length n. A

walk is closed if to = t,.,, otherwise open. It is called a trail if its edges are distinct, and

a path if its nodes (hence also its edges) are distinct. A circuit is a closed walk and a

cycle is a circuit with distinct nodes (aside from the initial node v0 = v"). It is generally

sufficient to denote a walk by its node sequence. the edges being implicit in the nodes.

Two vertices u, v E V(G) are said to be connected in G if there is a path from 1, to v

in G. and G is said to be a connected graph if every pair of nodes is so connected. By

convention each v E V(G) is connected to itself. so the property of being connected in G

is an equivalence relation on 1"(G). This relation therefore induces a partition of V(G)

into a number of disjoint subsets Il .. 1"k whereby two nodes are connected in G if and

only if they belong to the same subset of this partition. The number k of sets in the

11

Graph Connectivity

partition is a graph invariant which will be denoted by c(G), so G is connected if and

only if c(G) = 1.

The subgraphs G1, ..., Gk of G generated by the V 1,. ..,k are referred to as the
components of G. and these are the maximal connected subgraphs of G. These form a

disjoint partition of G (all the nodes and edges of G are accounted for), and in many

cases one can restrict one's attention to connected graphs only - otherwise consider its

components in turn. The graph G is said to be disconnected if c(G) > 1 and totally

disconnected if c(G) = p, whereby every v E V(G) is isolated in G.

If u and v belong to the same component of G, then we define the distance

dist(u, v) between them as the length of the shortest path joining them. (We also set

dist(u,u) = 0, and dist(uv) = +oc if u and v belong to different components of G.)
This induces a metric on each component of G, that is, it is symmetric and satisfies the

triangle inequality

dist(u, v) = dist(v, u) (3.2a)

dist(u,w) _ dist(u, v)+ dist(v,w). (3.2b)

A giaph which is used to model a communications network is generally assumed to
be initially connected. (Otherwise we study each component as a network by itself.) In
this setting the metric defined above is usually referred to as the hop distance. If

(v0 , V1 ... v) is a path in G, we can imagine sending a message from node v0 to node vn
through the n - 1 relay nodes v1... ,v, - 1. A total of n transmissions would be required

by this path. Thus the hop distance dist(u,v) is the minimum number of transmissions

required to realize communication between nodes u and v. Nodes in different

components of the network cannot be so joined, and such communication is not

possible.

3.2 MEASURES OF CONNECTIVITY

Obviously connectivity of a graph G is desirable for communications, so one would
want to quantify this property and determine how "well-connected" it is. The most

common way to do this is by specifying the number of nodes or edges that must be

removed in order to disconnect G. For even more information we would want to
identify those particular nodes or edges that should be removed in order to do this, that

is. those to which the network is most vulnerable.

Thus. we say that v E V(G) is a separating node (or cut-node) of G if

12

Graph Connectvty

c(G - V) > c(G). Similarly, e E E(G) is a separating edge of c(G - e) > c(G). A non-

separable or biconnected graph is one that is connected and has no separating node, and

a block of G is a maximal non-separable subgraph. Note that the blocks of a graph G

are not necessarily disjoint so as to form a partition of V(G), but two blocks can have at

most one separating node of G in common. This type of connectivity can be

characterized as follows-not only can any pair of vertices be joined, but this can be

done through any specified edge.

More generally, we will say that a connected graph G is n-connected, n > 1, if it

remains connected after the removal of any set of n - 1 vertices. The node-connectivity

K(G) is the smallest number of vertices whose removal results in a disconnected graph.

In a similar way, we define an n-edge-connected graph and the edge-connectivity A(G).

It is always true that

K(G) < A\(G) < 6(G). (3.3)

and this result is best-possible. (That is, given any three integers a,b,c for which

1 <a <b < c, there exists a connected graph G for which K(G) = a, A(G) = b, and

6(G) = c.) The book of Capobianco and Molluzzo [4] is a good reference for these

inequalities and illustrates by example the fact that they cannot be improved.

For communication networks it is desirable to have large values of t(G) and A(G),

as this provides for many alternative paths for communication between nodes.

Conversely, small values of these graph invariants imply that the network is relatively

vulnerable and can be disabled (i.e., disconnected) by the removal of only a few of its

nodes or links.

One should note, however, that in general a graph is more susceptible to node

removals than to a loss of edges. For example, the loss of the central node in a star

network will result in the remaining node set being completely disconnected, but for an

edge removal this type of behavior is not possible. That is, if k = A(G) > 2, then no

possible loss of k edges can result in a graph with more than two components.

Moreover. the removal of an edge (as opposed to that of a vertex) cannot decrease the

number of components of a disconnected graph. and in general

K(G - t,) > K(G) - 1 for all v e ,'(G) (3.4a)

A(G) > A(G - e) > A(G) - 1 for all c E E(G). (3.4b)

13

Graph Connectivty

3.3 CLASSICAL RESULTS ON CONNECTIVITY

In general. for a given number p of nodes, a (pq)-graph will have better

connectivity for larger q. Many of the standard results in graph theory illustrate this

point, such as

(i) If q < p - 1, then G is disconnected (3.5a)

(ii) If q > (p - 1) (p - 2)/2, then G is connected. (3.5b)

These statements, so disparate as to be essentially useless, use only the global

invariants p, q of the graph. More precise results can be stated in terms of the local
structure of the graph at its nodes. Specifically [4],

(iii) If 6(G) _ p/2, then A(G) = 6(G). (3.5c)

(iv) If 6(G) _ p - 2. then K(G) = b(G) (3.5d)
(v) If 6(G) > (p + n - 2)/2, where 1 < n < p, (3.5e)

then G is n-connected (i.e., tc(G) > n.)

The most important results along these lines are the theorems of Menger and their

many variations [3, 7].

Menger's Theorems (Node/Edge versions)

(i) K(G) > n if and only if for each pair u, v E V(G) of distinct, non-

adjacent nodes there exist at least n node-disjoint paths which

connect u and v.

(ii) A(G) > n if and only if for each pair u. v E V(G) of distinct nodes

there exist at least n edge-disjoint paths which connect u and

Observe the difference in the types of u-v connections referred to here. Two edge-

disjoint paths between u and v need not be node-disjoint, for different edges may be
incident to a common node. Node-disjoint paths, however, are necessarily also edge-

disjoint. Thus there should be fewer node-disjoint paths than edge-disjoint paths

between any pair of vertices, indicating once more the greater sensitivity of graph

connectivity to node removal than to edge removal.

3.4 CONNECTIVITY IN DIRECTED GRAPHS

Most of our definitions for (undirected) graphs transfer directly to digraphs, except

14

Graph Connectivity

what was previously called a walk (resp. path) is now referred to as a directed walk
(resp. path) from one node to another. The major difference is in the concept of
connectivity, which has several interpretations when the edge directions are
accounted for. We shall say that v E V(G) is reachable from u E V(G) if there is a

directed path in G from i to v. This is not an equivalence relation, however, since
there may not be a directed path from v back to u. We can talk about the
.6components" of G with respect to this relation (i.e., maximal subgraphs), but they

do not form a partition of the graph into disjoint pieces [8], as illustrated in Figure
3.1. Here node 3 is reachable from both node 1 and node 4, but neither one of these

two is reachable from the other.

0,3

44

3 2 oS\3

I /

lo 4

2 2

FIGURE 3.1 A DIGRAPH AND ITS "COMPONENTS"

The problem with this type of connectivity is that is does not result in a
partition of the graph into disjoint subgraphs which can be analyzed separately. To
avoid this difficulty we define two other types of connectedness. We shall say that

u.v E V(G) are weakly connected if they are connected in the underlying graph G. of

G. This is simply the type of connectivity considered previously. We shall say that

u, V E V(G) are strongly connected if each is reachable from the other. As this gives a
true equivalence relation, we can talk about strongly (resp. weakly) connected

digraphs and refer to the strong (resp. weak) components of digraphs..

There is still a problem here. illustrated by the first digraph shown in Figure 3.2-
this digraph is weakly connected. but in the strong sense it is totally disconnected.

15

Graph Connectivzty

That is, each strong component is an isolated vertex, for in this digraph no vertex is

strongly connected to any other.

V V

U i . w U.w

Nodes u and v Each node reachable
not reachable from w from the other two

FIGURE 3.2 STRONGLY DISCONNECTED AND CONNECTED

Another type of problem is also shown in Figure 3.2, where the reversal of the
direction of a single edge completely disconnects a strongly connected graph. We
shall avoid these difficulties in what follows by usually assuming a symmetric digraph
when modeling a communications network. In this case the reversal of any edge is
still an edge, so the reversal of any path in G is again a path in G. For such graphs
reachability is a symmetric relation and the notions of strong and weak connectivity
coincide so that all of the previous discussion applies with only minor modifications.

This is admittedly a very strong assumption and would not ordinarily be allowed,
for in many of the applications of digraphs the edge directions are of critical
importance to the problems being modelled. In scheduling problems, for example, it

is clearly impossible to execute one task before doing all those others which must feed
into it. We can justify our assumption here only because we will eventually limit
ourselves to stochastic networks in which each edge is assigned a probability of its
being operational. From the probabilistic point of view then, the presence of any
particular edge in a digraph is not important since it can be effectively eliminated
from consideration by assigning it an operational probability of zero.

3.5 TREES

The most important type of connected graph is a tree, namely a (p,q)-graph T
which is connected and for which q = p - 1. Such a graph is necessarily circuit-free
and will be disconnected by the removal of any edge. Moreover, between any two

16

Graph Connectivity

nodes of T there is a unique path joining them. A subgraph T of a connected graph
G is a spanning tree if it is a spanning subgraph of G which is also a tree. The
addition to T of any node or edge of G will then create a cycle in T. A node

v E V(T) is pendant if deg(T) = 1. while an edge c E E(T) is a leaf if it is incident to
a pendant node.

If G is a weighted graph we say that a spanning tree T of G is minimal if

w(T)=Z w(e) (3.6)
e E E(T)

is a minimum over all such spanning trees. Such spanning trees always exist, and can

be constructed by means of the following [IS].

Theorem: Let 'o E '(G) and let c E E(G) be such that w(e0) < w(e) for all edges e

incident to c'. Then there is a minimal spanning tree of G which contains the edge

CO.

This result is the basis for algorithms to construct a minimal spanning tree for any
connected, weighted graph G starting from a given initial root node vo. One well-
known method is Prim's method [20]. which may be described as follows:

1. Set V o {u}, T = 0.

2. If V o = V(G) then stop

3. Let Eo = {e E E(G): c= ic, u Eo, v E V(G) - Vo}

L = min {w(e): e E Eo}
and choose e E E with w(e 0) = L. say e = uv

4. Let z'0 = t'0 U 1{t'}

T =TU{e}

Go to 2

At any stage we adjoin to T the least expensive (i.e.. smallest weight) edge which

maintains the tree connectivity without forming a circuit. If we do not insist on

keeping T connected we obtain Kruksal's method, which builds up a collection of

disjoint trees which gradually merge into one another to exhaust V(G). Also, for a

disconnected graph this algorithm can be used to find the components of G, if in step

3 we choose c E E0 arbitrarily, but stop as soon as Eo = 0. The set I"0 is then the set
of nodes in the component of G which contains r0. (The same procedure finds a

spanning tree in an unweighted graph-simply define a weight function as w(e) = 1.

E E(G).)

17

Graph Connectzvztyi

Prim's method is an example of a greedy algorithm [21], which always chooses the

best edge available at that time. That is. it makes a locally optimal selection. which

for this example does in fact result in a global optimum. a minimal spanning tree.

Greedy methods do not always yield optimal solutions. but for many problems in

graph theory they (1o.

If T is a digraph we generally refer to a rooted tree, which has a distinguished node

co E IE (T). the root. such that

(i) indeg(c.) = 0 (3.7a)

(ii) indeg(') I for all t, E V(T) - v0 , (3.7b)

(iii) Every ' E V(T) is reachable from c0. (3.7c)

When we speak of a subtree or spanning tree of a digraph G we implicitly mean a

subgraph of this type. Most of the above definitions make sense in this context and

the graph algorithms used will be applied here. Note however, that Prim's algorithm

gives a minimal spanning tree rooted at v0. This is not necessarily a minimal

spanning tree of G. for it is not known a priori how the root t,o should be chosen so as

to give the desired global minimum.

'S

Graph Algonthms

4. GRAPH ALGORITHMS

Many problems are naturally formulated in terms of graphs or digraphs. such as

transportation or communication networks. job scheduling in manufacturing, physical

connectivity in electrical circuits, etc. Obvious questions arise, such as which nodes are

connected to a given node, what path between two nodes is the least expensive, or when

each manufacturing task should be scheduled.

For probabilistic graphs we don't ask if the graph is connected, but what the

probability of that event may be. or we might want the average distance (expected

value) between two vertices. We consider here some deterministic problems which

process only the graph data V(G) and E(G). along with any edge costs if we have a

weighted graph. Problems involving probabilistic networks will be considered below in

Section 5. but there is a significant difference here. As we shall see below, it is very

easy to determine if a graph is connected, but very difficult to compute the probability

that this is the case.

Before answering these probabilistic questions we must first deal directly with the

nodes and links of the graph that represents the network. For example. the probability

of two nodes being connected depends on the existence of paths between them, so we

would need to have an algorithm which returned a list of all such paths. if any. The

area of graph algorithms is a very important part of graph theory, particularly for

reliability problems which are computationally rather expensive. We are interested in

efficient algorithms, where efficiency is judged by being able to run the algorithm to

completion in an acceptably short time. Questions regarding available storage or

internal/external memory requirements are not considered.

4.1 ALGORITHM COMPLEXITY

The complexity of an algorithm is generally measured by the runtime of its imple-

mentation on a digital computer versus the size of the input data used by the

algorithm. It is important to recognize that this is a measure of the algorithm's worst-

case performance. That is. we seek an atpper bound f(7i) on the maximum number of

elementarv operations to carry out the algorithm as a function of the size n of the input

data. It may happen that some inputs are processed very quickly. ,r that the average

performance is fast. but we want a guaranteed upper bound for the computation over

19

Graph Algorzthms

all allowable inputs. References [29-38] ire all good references to the general theory of

algorithms and algorithmic complexity. Of these the book of Harel [33] is especially

recommended as a very readable and wide-ranging view of the field, and Sedgewick [37]

has a good discussion of algorithm implementation.

In our case the input data is a graph or digraph G(V, E) consisting of p vertices

and q edges, so the complexity of an algorithm will generally be estimated by a function

of p and/or q. We shall use the 0-notation here-given two functions f(n) and g(n), to

say that f(n) = O[g(n)] if there is a constant If > 0 so that f(n) <Mg(n) for all

sufficiently large n. The meaning of this is that f(n) is no worse that g(n), up to a

multiplicative constant. An algorithm is said to run in polynomial time if its

complexity satisfies f(n) = 0(nk) for some k > 0. Special cases are constant time

(k = 0) and linear time (k = 1). As an example. the well-known quicksort algorithm to

sort a collection of n objects is of type 0(n 2), although its average performance is known

to be 0(n log n), much faster for large n.

Polynomial time is generally taken as the boundary between practical and

intractable problems. Those problems for which there are no known polynomial-time

algorithms must generally be solved using algorithms which exhibit exponential growth

in the input size and are used only for relatively small networks. For faster

computation one must settle for only an approximate solution, or restrict the input data

to special networks which do admit a polymonial-time solution.

4.2 NP-HARD AND NP-COMPLETE PROBLEMS

Of special interest here are the so-called NP (non-deterministic polynomial)

problems. Roughly speaking, these are problems for which there exists a polynomial-

time algorithm which can verify the validity of any proposed candidate solution to the

problem, although the problem itself may not be known to have a polynomial time

solution. A problem is called NP-hard if it is at least as difficult as any NP-problem

(that is. a polynomial-time solution for that problem would imply such a solution to

'cery NP problem). An NP-hard problem is said to be NP-complete if it is itself an

.VP problem.

It is not known at this time if there exists any NP-problem which does not have a
polynomial-time solution. This would require a lower bound Un such a problem's

complexity which grew faster than any polynomial function. The book of Garey and

Johnson [32] is the most complete introduction to NP-completeness. although its

20

Graph Alqor thms

comnpilatioIi of NP-complete problenms is already quite dated.

Unfortunately, many well-known problenms in graph theory have been shown to be

.VP-hard. including some that are related to network reliability [40, 41]. As an

example, we consider tie following two questions for a connected graph G.

M an EdUlrLmU tour of G is a circuit of G in which each edge o,.curs exactly once.

(ii) a Hamiltouiau tour of G is a spanning cycle of G. (This is closely related to the

well-known traveling salesman problem.)

The question is whether such tours exist. but the answers are quite different. The

Eulerian tour problem is solvable by an 0(1") algorithm, while the Hamiltonian tour

problem is NP-complete. and as such the question is essentially unanswerable for large

networks. The inefficiency of a deterministic algorithm for an NTP-complete problem is

due to the exponentially large number of possible solutions that must be dealt with, and

it may be possible to decrease this expense by better defining and limiting the number

and type of potential candidates in the search. While still resulting in exponential

com)lexity. the order of growth is decreased and larger graphs can be processed in a
prescribed amount of time. Because of its practical importance, the Hamiltonian tour

problemn has been more intensively investigated than any other NP-complete problem

[3. 13]. For large graphs. however, all of the available search methods are intractable,

and one must settle for approximate solutions [21].

It should be noted, however, that some problems in the theory of graphs are

intrinsically non-polynomial in nature. For example. the number of minimal spanning

trees in a completely connected graph on p vertices is pP-2. Thus any algorithm to

compute all the spanning trees of a graph must expect to work at least this hard. which

is much worse than any exponential growth. Similarly the number of minimal cutsets

and minimal paths in graphs also exhibit such explosive growth and cannot be

completely specified by any polynomial-time algorithm. No NP-problem is known to

be of this type.

4.3 GRAPH TRAVERSALS

A trar(r,,al of a connected graph is simIply a procedure to visit the nodes of G in

ome systematic wav. starting from some given node and moving to adjacent nodes via

the edges of the graph. The two most commoni methods for doing this are the dcpth-
. search and 1hrdth-first search [20. 21]. Both can be used to construct spanning

21

Graph Algorihms

trees of G and to determine the component of the graph that contains the initial root

node.

In a depth-first search, immediately on visiting one node we move on to visit one of

its unvisited neighbors, if any. If this is not possible we backtrack to the last node that

was visited which does have unvisited neighbors and repeat the process. The procedure

terminates only when the visited nodes have no unvisited neighbors, exhausting V(G) if

that graph was connected. This very simple procedure is inherently recursive and is

best implemented in this way:

Depth-First Search

1. Given root node v0 , set T = 0

2. Set c(v) = 0 for all v E V(G)

3. Visit (v0)

4. Return T

The initially empty edge set T will be a tree which is rooted at v0 and spans the

component of G containing Vo. Hence. for a connected graph, T is a spanning tree of G.

It is constructed by successive calls to the recursivc function Visit, that is

Visit(v)

c(v) = 1

For all u E Ngbd(v) do

If c(u) = 0 then

Visit (u)

T = TU {uv}

In this function, each call to the function immediately marks the current vertex v as

having been visited (c(v) = 1), but no edges are added to the tree T as long as that

vertex still has neighboring vertices which have not yet been so marked. Instead, it

moves to one of the unmarked neighbors and repeats the process. The function call

finally returns with an edge added to T only when it has reached and marked as visited

a vertex all of whose neighbors have already been visited. Thus the search is forced to

look for new nodes to visit which are farther away from the root, and it will move

backward towards the root only when it encounters a dead end (although it can be

expected to form very long paths which will loop back closer to the root). It tends to

22

Graph Algorithms

produce very long trees with few branches. as the last vertex processed yields the first

edge of T.

Breadth-first search, on the other hand, visits all neighboring vertices of a given

vertex before moving farther away from the root. and as such it tends to produce short,

fat trees with many branches. It can also be given in recursive form, but is perhaps

more naturally non-recursive. One version of breadth-first search is described as

follows:

Breadth-First Search

1. Set c(v) = 0 for all v E V(G)
i= 1
C(vo) = 1

2. Let S {v: c(c) = 0. u E Ngbd(v) for some u with c(u) = i}
If S = 0 then stop

3. i=i+l
c(v) = i for all v E S

4. Go to 2

This implementation of the breadth-first-search algorithm includes a vertex-labelling

scheme which indicates how far the search has proceeded when it is visiting any

particular vertex. (That is, it computes c(v) = 1 + dist(v, v0) for all vertices v E V(G)

which are connected to the root vertex v0.) For any given distance d from the root, the

search will visit all nodes at distance d before moving out to look for nodes connected to

u0 at a distance of d + 1. Edges closer to the root are considered earlier in the process.

These procedures have many extensions and variations. Depth-first search can be
used to check for biconnectivitv [20], while the idea behind breadth-first search can be

used to find minimal paths in weighted graphs [31]. The precise form of the tree

constructed depends on the order in which the edges are represented. Also, if the graph
were not connected then both of these algorithms visit those nodes of G which lie in the

connected component containing the root node v0 . Thus these algorithms can check for

the connectivity of G., or can find all of its components should it be disconnected.

4.4 EXAMPLES

As an example, in Figures 4-1 and 4-2 below, we show how the depth-first and

23

Graph Algorithms

breadth-first methods might be implemented in Pascal when using an adjacency matrix
representation of the graph. The algorithm outputs given in Figure 4-3 and
diagrammed in Figure 4-4 show their operation on the (8, 20)-graph whose edge list is
shown. The edges, starting from node #1, are shown in the order processed by the

computer. Thus in the depth-first-search algorithm the edge from node 3 to node 4 is
the first edge added, since node 4 is the first vertex from which the search has to

backtrack from a dead end. Conversely, the edge from node 1 to node 2 is the last edge
added to the tree, although it was the first link traversed by the algorithm. The
breadth-first-search, however, also traversed this link first but adjoined it to the tree
immediatelh. Note that these two algorithms are both of complexity O(p2), due to the
use of loops for the adjacency matrix representation. For sparse matrices the use of
adjacency lists can do much better, say O(p + q).

24

Graph Algorithms

CONST
MAXV = 20; (, Maximum number of graph nodes ,)

TYPE
NodeSet = Set OF 1..MAXV:
NodeList = Arrav[1..MAXV] OF Integer;
AdjMat = Arrav[l..MAXV] OF NodeList;

VAR
A : AdjMat: (A = the adjacency matrix of the graph ,)
NodeNum : Integer; (, NodeNum = number of nodes in the graph z)

PROCEDURE DFS(Root : Integer);
(- Depth-First Search of graph from root node ,)
VAR

i : Integer,
Tag : NodeList:

PROCEDURE Visit(k : Integer);
(* Recursive traversal from node k *)
VAR

i : Integer;
BEGIN

Tag[k] := 1;
FOR i := 1 TO NodeNum DO

IF (A[i.k <> 0) AND (Tag[i] = 0) THEN
BEGIN
Visit(i);
Writeln('Edge: % k. -- > ');

END;
END; (* Visit ,)

BEGIN (-, Start of DFS ,,)
FOR i := 1 TO NodeNum DO

Tag[i] := 0;
Visit(Root);

END; (* DFS ,,)

NOTES: This is a recursive version of the depth-first search. The Tag vector
is simply a Boolean labelling of the nodes, where Tag[v] = 0 if and only if
node v has not yet been visited. The edges are written out in the reverse
order of that in which they are traversed. Bookkeeping is kept to a minimum
in this version of the algorithm.

FIGURE 4-1 DEPTH-FIRST SEARCH ALGORITHM

25

Graph Algorithms

CONST
MAXV = 20: (* Maximum number of graph nodes ,)

TYPE
NodeSet = Set OF 1..MAXV,
NodeList = Arrav[1..MAXV] OF Integer;
AdjMat = Array[1..MAXV] OF NodeList;

VAR
A : Adj Mat: (* A = the adjacency matrix of the graph *)
NodeNum : Integer; (* NodeNum = number of nodes in the graph ')

PROCEDURE BFS(Root : Integer);
(* Breadth-First Search of graph from root node *)
VAR

Tag : NodeList:
Next : NodeSet:
i. j, Count : Integer:

BEGIN
Count := 1;
FOR i := 1 TO NodeNum DO

Tag[i] := 0;
Tag[Root] := Count:
WHILE TRUE DO

BEGIN
Next := [];
FOR j := 1 TO NodeNum DO
FOR i := 1 TO NodeNum DO

BEGIN
IF (Tag[i] = 0) AND (Tagj] = Count) AND (A[i,j] <> 0) THEN

BEGIN
Next := Next + [i;
Tag[i] := Count + 1;
Writeln('Edge: 1, j, -- > ', i);

END:
END:

IF (Next =[J) THEN Exit;
Inc(Count);

END; (* WHILE *)
END: (* BFS -)

NOTES: This is a non-recursive version of the breadth-first search. The Tag
vector here will label the vertices according to their distance from
the initial node, where again Tag[v] = 0 implies that node v has not
yet been visited. If the NodeSets Next were accumulated, then the final
result would contain those nodes in the connected component of G which
contains the root node.

FIGURE 4-2 BREADTH-FIRST SEARCH ALGORITHM

26

Graph Algorthms

Example Graph:

Root Node: 1
No. of Nodes: 8 l-2
No. of Links: 20 2
Edge Listings: \ 5

12 6
1 4
1 5
2 1
2 3

3234 "___ __ _3_

37 40 3
4 1
43
5 1
56
58
62
65
73
78
85
87

Algorithm Outputs:

DFS: Root = #1 BFS: Root = #1

Edge: 3 -- >4 Edge: 1 -- >2
Edge: 5 -- >6 Edge: 1 -- >4
Edge: 8--> 5 Edge: 1 -- >5
Edge: 7--> 8 Edge: 2-> 3
Edge: 3--> 7 Edge: 2--> 6
Edge: 2--> 3 Edge: 5--> 8
Edge: 1 -->2 Edge: 3--> 7

FIGURE 4-3 EXAMPLE OUTPUTS OF SEARCH ALGORITHMS

27

Graph Algorithms

o= e-- 6

Original
Graph G

4 0 03

Vpp

Depth - First
Search Tree

V 0

0 0

Breadth - First
Search Tree * •

NOTE: Max {dist(?it'o):u E V(G)} = 3 in the original graph and in the breadth-
first search, but this value has increased to 6 with depth-first searching

FIGURE 4.4 GRAPH TRAVERSALS AND SPANNING TREES

28

Graph Algorithms

4.5 OTHER GRAPH ALGORITHMS

Other important polynomial-time graph algorithms are those of Prim and Kruksal
for constructing minimal spanning trees of a connected graph starting from an initial
root node. Again. both of these algorithms are 0(p2) when the graph is represented by
an adjacency matrix. Also. shortest-path algorithms are basically breadth-first searches
(as is Prim's algorithm) and give constructions such as Dijkstra's method and shortest-

path spanning trees.

Transitivity problems also arise here. The transitive closure G* = G(V, E*) of G is
the graph for which e = uv E E* if and only if there is a path from u to v in G. Here
Warshall's method (compute the adjacency matrix of G*, given that of G) and Floyd's

algorithm (calculate the minimal cost of each e E E) are used, both of which are of

order O(p').

Other YP-complete graph problems include longest path problems, minimum
vertex colorings, maximal clique size (largest completely connected subgraph), and
minimum vertex coverings (smallest set of nodes to which every edge is incident). No
polynomial time algorithms are known for any of these questions, and the most
commonly accepted opinion is that no such algorithms exist. That is, the NP-complete

problems probably have no polynomial time solutions.

For NP-complete problems a polynomial-time algorithm can now be found only
when some restrictions are made on the inputs allowed. For example, if a graph G

satisfies

deg(u) + deg(') > p (4.1)

for all non-adjacent nodes u. t E V(G), then it is known that G has a Hamiltonian cycle.
In this case there is an 0(p2) algorithm which will find such a cycle, but this will fail for
non-Hamiltonian graphs or for some Hamiltonian graphs which do not satisfy the above
condition (which is not a necessary condition for Hamiltonicity). See Buckley and

Harary [3] for a description of such an algorithm.

29

G;raphz Algorithmns

30

Probabilisthc Networks and Reliability

5. PROBABILISTIC NETWORKS AND RELIABILITY

Communication networks are generally modelled by weighted digraphs in which the
nodes represent communication centers (transmitters, receivers, relays) and the edges
are communication channels between the nodes. The weight associated with each edge
is taken to be the probability of that edge being operational. A reliability measure on
such a network is then the expected value (in the probabilistic sense) of some aspect of
the connectivity of the underlying graph. In particular, we are interested in the
probability that a path exists between two given nodes, or the probability that the

network is connected [14].

This section describes some of the reliability measures of interest and discusses the
problems involved in calculating them. Specific methods used for reliability
computations are considered in the following section. Unfortunately, most problems in
reliability are NP-hard [39-47]. While it is possible to obtain polynomial time
algorithms for reliability calculations of some restricted classes of networks, such
restrictions are far too strong to be applied to mobile communication networks

operating in stressful environments.

5.1 MODELING OF COMMUNICATION NETWORKS

We shall take as our model of communication networks a weighted digraph
G = G(V,E) with the weight function P : E(G)-R interpreted as the probability of the
edges being operational. (That is, 1 - P(e) is the probability that edge e E E(G) has
failed.) It is not. in general, assumed that P(e) = P(e') for e E E(G), where et E E(G) is
the reversal of e. If this is always the case then we will refer to G as a symmetric or
undirected network. Many of the results in the literature apply only to this case, which
does not model some local node/link behavior, such as directional antennas for

transmission and reception.

In what follows we shall concern ourselves primarily with link failures, which has
been the situation dealt with most extensively in the literature. That is. we initially
assume that the nodes are completely reliable, so we do not consider a corresponding
probability function defined on the set of vertices of G. The problems posed by node
failures, however, are of importance in mobile communications networks, so we will

31

Probabilzstzc Networks and Reliabilzty

return to this question below. Of most significance here is how some of the methods

which have been developed to treat only edge failures can easily be modified to take

into account the possibility of node failures as well.

An important assumption usually made at this point is that all edge failures (and

node failures. if these are included in the model), are statistically independent. This

assumption greatly simplifies the reliability calculation, but is unrealistic in many

situations, such as when some communication equipment is shared by several links.

However, the modeling of dependent equipment failures generally requires the use of

conditional and/or joint probability distributions, of which there are potentially an

exponentially large number [48-56]. Since most reliability problems are known to be

NP-hard. even in the enumerative sense, this greatly increases the difficulty of the

computation, and we will assume independent component failures in what follows.

5.2 RELIABILITY

As described previously, network reliability is a measure, now in the probabilistic

sense, of the connectivity of a network. The most common statistic used is the so-called

K-terminal reliability where K C V(G) is a distinguished subset of the vertices of the

graph. The reliability problem is to calculate the probability that every two vertices in

K are connected by a path of operational edges. Of particular interest here is the 2-

terminal reliability, when IK = 2, and the all-terminal reliability, where K = V(G).

For 2-terminal reliability we have K = {s, t} where s, t E V(G) are referred to as the

.source and terminal (or sink) respectively. The st-reliability of the network is the

probability of the source being able to communicate to the sink. Note that if we have a

non-symmetric network it is important which node is the source and which is the sink.

as we are asking for the probability of a working path from the source to the sink. The

st-reliability for an undirected network can be considered as a special case of that for a

directed network (each edge is equivalent to two edges with opposite directions but

equal probability of failure). The st-reliability will be denoted by Rel(G; s, t).

For an undirected network the all-terminal reliability is simply the probability that

the network is connected, or. what is the same, the probability that the graph G

contains at least one operational spanning tree or subgraph. For directed networks the

all-terminal reliability measures the probability that the network is strongly connected.

It seems. however, that strong connectivity, even in the probabilistic sense, is too

restrictive a requirement. For example. using local jamming it might be relatively easy

32

Probabilzstzc Networks and Reliabzlity

to isolate a particular node on the periphery of a graph so that it could no longer receive

messages from the rest of the network. Even if transmissions from this node could be

relayed throughout the network to all the other nodes, the reliability of the network in

the strong sense would be zero. This should be considered too pessimistic a reliability

measure for the overall performance of such a network. The all-terminal reliability will

be denoted by Rel(G), and for an arbitrary K C V(G) we let Rel(G;K) denote the K-
reliability of G.

Since we cannot abandon the use of directed networks if we want to model any

direction-dependent behaviour in the network links, the all-terminal reliability is not an

appropriate statistic. Instead we shall concentrate on the 2-terminal st-reliability. If a

global figure for the network as a whole is required, we could use the average of these

reliabilities over all possible p(p - 1) node pairs.

Res(G) 1 E Rel(G:s.t). (5.1)p(p 1) VtV(G)

the so-called resiliency [63] of G. This measures the fraction of all possible source-sink

pairs for which communication paths can be established. (Of course. we have

Rel(G: s. t) = Rel(G: t. s) if G is a symmetric network.)

5.3 SPECIAL CASES

It is an unfortunate fact of life that the calculation of any of these reliability

measures for an arbitrary communications network is an NP-hard problem. This

remains true even if a number of additional simplifying assumptions are imposed. For

example. one might (unrealistically) require that all link probabilities are equal, say

P(c) = 30 for all c E E(G). where 0 < .30 < 1 is a constant. The reliability calculations

can then be reduced to problems in graph enumeration. Let Ik be the number of paths

from s to t of length k. 0 < k <q. Then we have

Rel(G; s. t) = M3k(1 -)q-k (5.2)
k> I

Analogously, if .Vk is the number of spanning subgraphs of G having k edges. then

Rel(G) = .'3) (1 - 1")- k (5.3)
k> i

However. even the graph enumeration questions of determining the coefficients 11k and

N'. are NP-hard [47].

33

Probabiszc .Vet works and Rellabdz ly

An alternative simplification is to restrict the class of networks under consideration

[37-671. say to those whose underlying graph is planar. (That is, the nodes and edges

can be drawn in the xy-plane in such a way that no two edges intersect, except at a

node of tile graph.) However, the reliability problem is also NP-hard for planar

networks [58]. This is even true for grid networks where the nodes are located at the

points of a regular square lattice in the xy-plane and each node has direct edge

connections only with its nearest neighbors [621. While it is possible to still further

restrict the networks being considered so as to obtain a class (e.g .. series-parallel

graphs) of graph inputs for which polynomial time reliability algorithms do exist, such

restrictions are too severe for our purposes.

Indeed. for mobile communication networks it is not realistic to restrict the
possible toooyor noe-ecneciivi n way whatsoevei. The links in suchibetopology ornode interconnectivitv in any

networks are constantly changing as the nodes move in and out of range of one another.

Moreover. under battlefield stress conditions, such as local jamming or attack, any link

or node is subject to failure. In principle, then any (p,q)-digraph could occur as the

underlying graph of a communications network. For the same reasons, no a priori

restrictions could be placed on the values of the edge failure probabilities.

5.4 RELIABILITY ALGORITHMS

Thus any algorithms to be considered for use in our network reliability calculations

should be able to deal with a completely general network with no constraints imposed

on either the available edge connections or on the values of the link probabilities. A

number of such methods have been developed in recent years, and improvements are

constantly being made. We will discuss a few of these in some detail in the next

section, but the reader should take note of the various survey articles on network

reliability that have been previously published [68-82].

Not all of these bear directly on communications. some being either too specialized

or emphasizing some aspect of reliability of less immediate interest to us, but all are

worth perusing if only to get a different point of view. Thus [80] is concerned almost

exclusively with planar networks, much too restrictive a condition to be required of a

mobile communications network. Another example is [69], which stresses the

applications of reliability criteria in the synthesis of communication networks. From

this point of view the node/edge configuration of the graph is, at least to some extent.

at the disposal of the designer and can be adapted as needed to satisfy minimal

34

Probabzlistzc Networks and Reliabzlzty

reliability or vulnerabilitv requirements.

One topic that has not been mentioned vet but which will obviously be of great

interest in the future is the application of parallel processing techniques to solving

graph-theoretic problems. Here the computer consists of many separate processing

elements, each working simultaneously on its own part of the problem. With a large

number of processors the time required to comnpkte the computation will generally be

much less than when the data is processed serially in the usual way through a single

central processor.

For example, to simply add up N numbers obviously requires N - 1 additions,

hence O(N) machine cycles on such a computer. However, if there were available N

parallel processors. one for each item of" data. then this can be done in 0(log 2N) cycles,

an enormouis saving for large N. Similarly . no all-purpose serial sorting algorithm can

process .N items in better than 0(.N log N) time, but much better algorithms can be

devised to (1o this if N or more processors are available. Another example is that of

matrix multiplication-if N"2 processing elements are available, then two N x N

matrices can he multiplied in 0(N) time.

Many of the standard graph problems have been studied from this point of view

and parallel algorithms are available for vaiious computer architectures [83-89]. These

include algorithms for finding spanning trees. connected components, and graph

traversals. However, the ,rallel algorithms are in general not simply direct transfers of

the serial-type algorithms to parallel form. for this is not usually possible. Devising a

parallel algorithm often forces a completely new approach to the problem in question

and may require new ways in which to rpresent the data so as to be able to exploit the

parallel structure of the machine. Current research in this area is very intensive.

It is natural to expect parallel processing to be of considerable help in reliability

computations. Hopefully we could solve many of the NP-hard problems referred to

earlier in polynomial time. and for many of them this is in fact the case, but only at a

high price. For example. consider the Hamiltonian tour problem referred to in the

previous section. With sufficiently many processing elements. all we need to do is just

dedicate each processor to the task of generating and testing its own candidate solution.

Sinc an NP problem. by its very definition. admits to a polynomial-time algorithm for

checking the validity of a solution. if the problem has any solution at all then one of the

processors is guaranteed to find it. and in polynomial time. In this sense, then. any NP

problem can be solved in polynomiial-tine. (We ignore any' difficulties that might arise

'35

Probabilistic Networks and Reliabzlity/

when processors need to communicate or synchronize with each other, although this is a

very important consideration in the design of parallel algorithms.)

Of course we now have to devote an exponentially large number of processors to

solving the problem. As this is completely out of the question, we must settle for

something less than a true polynomial-time algorithm. The minimum we want is to

use parallel processing to obtain algorithms that either

(i) process our current networks much more rapidly than the available

serial algorithms

or (ii) allow us to deal with much larger networks in the same time we now

devote to serial calculations.

The extent to which these goals are realizeable is still being investigated. In addition to

the problem of obtaining a polynomial-time algorithm, questions about algorithms using

only a polynomial amount of storage are also of great interest. Dotson's method, (see

below), for example, requires an amount of temporary storage which grows

exponentially with the size of the network.

36

Calculation of Reliability

6. CALCULATION OF RELIABILITY

As noted above, the problem of calculating 2-terminal st-reliability is. in the worst

case, NP-hard. Therefore, all general reliability calculations should be expected to take

an amount of time which grows exponentially with the size of the input. Nevertheless,

some algorithmic approaches to the problem are much better than others. Some of the

more recent algorithms require much less time to complete the computation than was

required by earlier methods. This allows the exact reliability to be determined for

much larger networks than were possible previously. In addition. the wide availability

of inexpensive hardware with appreciable amounts of high-speed storage permit many of

these calculations to be done relatively quickly in a desktop envirc-1ment using personal

computers.

In this section we discuss a number of the more recent approaches to performing

these calculations. However, for very large networks no currently existing computer

machinery is even remotely capable of computing their reliability. For such problems

one must resort to approximation methods to obtain upper and lower bounds on

Rel(G;s,t), ideally in polynomial time. A number of such methods are available but

they tend to be somewhat heuristic in the sense that the error is not necessarily known,

although some of these do maintain current error estimates. Also, it is not clear what

type of networks these algorithms are best suited for. While a particular algorithm may

appear to do very well for one particular type of network, no one can claim to be

uniformly better than another. Direct comparisons between them which remain valid

over all allowable inputs are not available.

Finally, if the available bounds on network reliability are not sufficient, one can

resort to Monte Carlo simulation methods. If properly implemented these are capable

of maintaining upper and lower bounds. but convergence is generally very slow.

6.1 STATE SPACE ENUMERATION

The most direct method of evaluating network reliability, or that of any

probabilistic Boolean system. is to enumerate every possible state of the network. For

our communications networks there are a total of 2q such possibilities (2P + q if node

failures are also considered). since cach edge can independently be either up or down.

This decomposes the success or failure event into its most elementary subsets. It is

37

Calculatzon of Reliability

very easy to implement this decomposition and to accumulate the success probabilities.

However. because of the large number of system states of the network. it is not practical

to use such a method to carry out a general reliability calculation to its conclusion.

Rather, one can generate the most probable system states first and accumulate the

results until most of the state space has been processed [90-91]. For example, suppose

that the k most probable of the 2q elementary events, say a1 , a2 ,... , ak , have been

determined. If we then define

E =(k) =I - P(aj), (6.1)
a1 ES

and

-y Z P(a), (6.2)

where S is the success event (there exists an operating path from s to t), then

Rel(G; s, t) = P(S) and

-t < P(S) <+ E. (6.3)

This method would be useful only if c = e(k)-*O rapidly as k-*oo, which requires that all

of the network components have a very small probability of failure. Thus it is practical

for networks with very reliable components. It can also be used to estimate other

network functions that would not be readily available should a much coarser partition of

the state space be employed.

Thus if Q is some quantity defined over the network and having value Q(a) when

the network is in state a, then

E P(aj Q(ai) (6.4)
a, E S

is an estimate of the average value of Q over the success set. Similarly, for any

constant Q0 ,

as))a (P(aj) (6.5)Q(aj) > Q0 (aE

alES

approximates ths probability that Q exceeds Q0 , given that the success event occurred.

If we had used a partition of S into non-elementary subsets, the quantity Q might vary

significantly over such subsets and the simple estimates above would not be available.

With a little more work it is possible to maintain upper and lower bounds on such

estimates, including st-reliability. As such, these algorithms can monitor the

38

Calculation of Reliabzlzity

convergence of the reliability estimates, but the rate of convergence will be

unacceptably slow for all but extremely reliable systems.

6.2 INCLUSION-EXCLUSION METHODS

The term inclusion-exclusion refers to a class of methods involving a decomposition
of the success or failure events as the union of more elementary success and failure
events, but much coarser than an enumeration of the whole state space [92-100]. As an
example, consider the success event S, which occurs if there is at least one operating
path from s to t. We can imagine that the set of such paths have been enumerated and
consider the event Si that all of the edges in the i-th path are operating, so S is the
union of the events Si, say i = 1 11. The inclusion-exclusion principle is simply the
formula for the probability of an arbitrary finite union of sets, we have

M
s= U Si, (6.6)

i=1

for which the probability of success is

Rel (G:s.t)= P(S) = P(U Si) (6.7)
i=1

=ZP(S,)- Z P(S, nS.)

+ Z P(Ss, nS Sk)-... +(-1)Mp(sn...nS,).

The failure set F is handled in a similar way, now using a cutset enumeration. An
st-cutset of G is a set E0 C E(G) for which G -E is disconnected with s and t
belonging to different components of G - E 0. It is said to be minimal if no proper
subset has the same properties. Suppose that the minimal st-cutsets have been
enumerated and let F, be the event that all of the edges in the i-th such cutset have
failed, say 1 < i < N. Then F is the union of the sets F1 , F, and the inclusion-

exclusion principle applies again:

39

Calculation of Reizability

N
Rel(G:s.t) = -P(F)=I-P(U Fj) (6.8)

= 1--P(F)± + P(F, nFj)

-.. +(_-1)Nx + I P(F n ... nFN).

If only a partial enumeration of the minimal st-paths and st-cutsets were available.

say S3,S, and F1 , F, where m < M and n < N, then we can obtain upper and

lower bounds by

(_P n
P U S,) Rel(G-s,t) U F,), (6.9)

i=l l

and use the inclusion-exclusion principle to evaluate these bounds.

While there are a number of techniques to determine the minimal st-paths and st-

cutsets [97-100], this method as described so far has some severe drawbacks. First, the

number of these events, M and N respectively, grow exponentially with the size of the

network. Even worse. the number of terms generated by the application of the

inclusion-exclusion principle is itself exponential again as a function of these quantities.

Also. the various intersections of the original success or failure events frequently overlap

or even coincide. This leads to a large amount of unnecessary calculation of the

probabilities of these intersection events, many of which cancel with one another. Thus

a direct application of these methods is extremely inefficient and should not be used for

anything but very small networks.

Significant improvements can be made in this approach if one avoids the repeated

calculation of canceling terms in these expansions [95, 96]. This is possible because the

success probability

P(S) =P(U si) (.0
1--1

can be expressed by means of non-cancelling terms which can be put into a one-one

correspondence with certain subgraphs of G. We say that a subgraph Go C G is an st-

subgraph if every edge of Go lies in some path of Go which connects the source to the

sink. The non-cancelling terms in P(S) will correspond to the acyclic st-subgraphs,

40

Calculation of Reliability

those which have no directed cycles, while terms which cancel identically result from

those which admit cycles. Figure 6.1 shows the various subgraphs in a five-node

network.

Hence in calculating P(S) it is only necessary to compute the probabilities P(G.)

for the acyclic st-subgraphs G, of G. and there are far fewer of these than the number of

terms in the inclusion-exclusion expansion formula (although the number of these

subgraphs still grows exponentially with the size of the network). The acyclic st-
subgraphs can be systematically constructed by a succession of edge replacements, and
the st-reliability formula so generated is in a factored form which, if multiplied out, is

equivalent to the sum of the non-cancelling monomial terms given by the inclusion-

exclusion form. However, the terms that result here are not all positive, so terminating

the process prematurely does not necessarily give a lower bound on the reliability.

These methods can also be applied to other measures of network reliability (e.g. K-

terminal, all-terminal). A somewhat simpler procedure for the all-terminal reliability

Rel(G) can be based on the spanning trees of G instead of st-subgraphs. This will give

lower bounds on the reliability, but applies only to undirected networks [93]. They offer

a tremendous improvement over the direct application of the inclusion-exclusion

principle and make possible exact reliability computation for networks that were too

large to be amenable to this type of analysis by previous algorithms. Nevertheless,

there are more recent methods which perform even more efficiently and which give

upper and/or lower bounds on the st-reliability when terminated before completion of

the calculations.

It is interesting to note [102] that if all of the minimal st-cutsets of G have been

enumerated, say X1, ... , XN, then there is an algorithm for the st-reliability that has

polynomial complexity in N. Specifically, its runtime growth is 0((p + q) N2). While

it is true that N may grow exponentially with p and q, for some networks it grows more

slowly than this worst-case behavior would indicate. In general, moreover. N will

increase less rapidly with the network size than the totals for other quantities used in

reliability calculations, such as the number of spanning trees. Surprisingly, however,

the corresponding result for paths is false (unless every NP-complete problem has a

polynomial-time algorithm). That is. if all of the st-paths of G have been collected. say

.. there is no st-reliability algorithm having polynomial-time complexity as a

function of 31. In fact. this is true even for a class of graphs for which J1 grows

41

Calculaizon of Reliability

St

(a) Non st-subgraph
(Not every edge is in an st-path)

S It

(b) Acyclic st-subgraph
(Every edge is in an st-path)

S t

(c) Cyclic st-subgraph
(Every edge is in an st-path)

FIGURE 6.1 SUBGRAPHS OF K.5

42

Calculation of Reliability

only polynomially as a function of p and q, so the exponential growth in the worst-case

complexity of st-reliability calculations is not due merely to the fact that the number of

st-paths may be large.

6.3 DISJOINT SUMS

An alternative to using the general formula for the probability of an arbitrary

union of sets, as in the inclusion-exclusion principle, is to express the success or failure

event as a union of disjoint sets [101-1041. For such disjoint unions the individual

probabilities simply add up directly with no cancellation. For an example of how this

can be done, consider the success event

M
S= U si (6.11)

as described above. We can define an associated sequence of success events as

S' = S1 (6.12a)

S' = S2 -$1 = S2 n S, (6.12b)

S'. = Sk-(SIUS 2U...USk- 1)
= Sk n Sl n2 l... n-Sk-, k=2.I. (6.12c)

(Here A denotes the set complement of A in the state space.) It is clear that these

events are mutually disjoint and that their union is S. whence

M
Rel(G:s,t) = P(5) = P(S') . (6.13)

i=l

Obviously a similiar procedure applies to the failure event, and partial results can

be obtained by truncating the process at any stage to yield upper and lower bounds on

the reliability. There are a large number of variations on this theme, for there is no

reason to enumerate all the success events S, first and then construct the disjoint events

S'. It would obviously be preferable to construct the disjoint partition of S into

S;...S',, directly by first generating a success event S,'. then a second such set S

disjoint from the first. and continuing until the full success event S has been exhausted.

This is frequently done using Boolean algebra constructions and inversion

(set complementation) techniques to obtain disjoint Boolean forms [101. 103, 114]. Here

43

Calculation of Relzabahty

the Boolean variables would be X, = 1. q with X, true if edge number i is

operating, and false (N, true) otherwise. General methods of Boolean algebra can be

applied in this setting so as to attempt to minimize the number of terms involved in

representing the Boolean function which represents a successful st-connection. That is,

an economical representation of the success function would mean an efficient partition

of the success event into disjoint subsets. hence a relatively small number of terms in

the expression for Rel(G:s.t). While research is still continuing in this area [109-113],

one should note that the problems in Boolean algebra associated with this approach are

themselves NP-hard.

As an example. consider that probability of the failure event F, which is initially

expressed as the (non-disjoint) union of the minimal st-cutsets. The disjoint sums are

built up inductively, with each cutset contributing mutually disjoint terms which are

themselves disjoint with respect to all the cutsets previously processed. Earlier

algorithms of this type involved complementing individual Boolean variables one at a

time. but substantially fewer disjoint terms may result if complemented products are

used. A simple illustration of this is given by the two terms

S1 = XIX 2X 3 and S2 = X4 X, (6.14)

whose ,um is to be expressed as a disjoint sum. Single term complementation of the

product S gives

St = ' 1X 2 X 3 = X 1 + X 1X 2 + X 1 X 2X 3, (6.15a)

thereby resulting in a four-term disjoint expansion for S = S, + S 2, namely

S = 'xIX2X3 + Y 1 X 4 X 5 + x 1 Y 2 x 4 X 5 + X 1 X2X3X4Xs, (6.15b)

and its corresponding reliability expression

P(S) = PIP2P3 + (1 - PJP4P5 + P(I - P2)P4P5 + PIP2 (1 - P3)P4P5, (6.15c)

where p, is the probability that the variable Xi is true. Using the direct

complementation of the product, however, gives a two-term disjoint sum

S = X.X 2X 3 + (X 1 X 2X 3) X4X, (6.16a)

and its corresponding reliability

P(S) = P1P2P3 + (1 - PIP2P3)P4P5. (6.16b)

Of course, these two expressions give exactly the same reliability. This simple

difference can result in a large decrease in the number of terms needed in order to

44

Calculation of Reliability

express the failure event F as a disjoint sum. While the number of terms still exhibits

exponential growth, the rate of growth is much less [107].

6.4 DOTSON'S METHOD

Dotson's Method [115-119] is an interesting variation on the disjoint sum approach
just described in that it simultaneously generates both success and failure events as it

proceeds. As these events are mutually disjoint, the success and failure probabilities
can be accumulated by simple additions as the algorithm is running, so there are always

available both an upper and a lower bound on the st-reliability. Thus the error in these

bounds can be continually monitored and the algorithm can be terminated at any time,
such as whenever pre-assigned convergence criteria have been satisfied. If the algorithm

is run to termination then a complete description of both the success and failure events

has been computed.

This method seems to have been somewhat unjustly neglected since its original
publication [116], so we will give an example of applying it to a simple network later.
We have recently made extensive use of it for st-reliability calculations, as it has a

number of advantages over some of the procedures mentioned above. The method
begins by finding some initial path. say r, from the source to the sink. Such a path,
which must exist if the sink is reachable from the source is then the first element in a

collection of success events. If the length of r is k, then each of the k edges of r are
successively complemented (disabled), one at a time, and these complemented events

are stored in some temporary working array, say TV.

In the general stage of the algorithm we examine th, events w E W one at a time
and for each such event we search for an st-path in the graph G. = G - E., where E,
is the set of edges in the event w under consideration which have been disabled. If this

is not found then w is added to the (initially empty) collection of failure events.
Otherwise a new st-path is found. say i'. It is added to the collection of success events
and its complementary events stored in a new temporary working array T,. This
procedure continues until all w E TV have been so processed, at which time the whole
routine is repeated again with the newly constructed working array W' in place of W.
The main point of the Dotson method is the use of the complementary events to
generate subsequent success and failure events, but its effectiveness depends on the
particular path-finding method employed. In particular. it is important to generate the

most probable success events early in the process. and efficient path-finding algorithms

45

Calculation of Reliabihty

for this purpose are described in [117] and [118].

If run to completion the algorithm will terminate with WV' = 0. no further events in

the temporary array. In this case the success and failure events, S and F, are

completely exhausted by the success and failure collections which have been

accumulated during the above procedure. The st-reliability can then be computed from

either of these collections as

Rel (G; s, t) = P(S) = 1 - P(F) , (6.17)

or these probabilities could have been continually updated as the algorithm proceeded

to monitor the error. The relative efficiency of Dotson's method is that the

success/failure partitioning of S and F constructed thereby are rather coarse. For

example, if there is an edge in E(G) which connects s and t, then this edge is the first

success event - found and it is thereafter never considered again, immediately reducing

the size of the state space by a factor of 2.

The main drawback to Dotson's method is that the intermediate storage required

for the temporary arrays may be very large. (Of course, the number of success and

failure events found by the algorithm will also be large, but these need not be stored if

the probability updates are done right away.) Whether this is true or not depends on

the order in which the events in the working array are processed. If this array is

implemented as a simple stack (LIFO), then the number of temporary events that must

be stored does not grow exponentially with the network size and there is no problem

with intermediate storage.

However. Dotson's method should find the shorter st-paths earlier in the search,

and since these are the more probable it is desirable to process them early in the

algorithm [99]. This requires operating the temporary storage array as a queue (FIFO),

and this will result in large storage arrays whose size will grow exponentially with the

size of the network. Moreover. if the algorithm is to be terminated early then FIFO

operation must be employed. (Stack operation would leave highly likely events still

unprocessed.)

Figure 6.2 gives an example of Dotson's method applied to a simple 4-node network

with all edges given a probability of 0.8 of being operational. There are four success

events and five failure events and the nine corresponding network configurations are

shown in Figure 6.3. Note that none of the nine subgraphs shown admit cycles. Also,

each of the four success events gives a subgraph of the network in which t is reachable

from s. but not all of these are st-subgraphs. In general. Dotson's method generates

46

Calculation of Reliability

Number of Nodes: 4
Number of Links: 5
Source Node: 1
Terminal Node: 4
Max Hop Distance: 3 1 4
Edge List:

1 2
1 3
2 3
2 4
3 4

Output of Dotson Algorithm - Summary

*>> Next working queue size: 1 <<<
>> Next working queue size: 2 <<<
>> Next working queue size: 4 <<<

>>> Next working queue size: 2 <<<

Number of Successes: 4
Number of Failures: 5
Number of Events: 9
Link Probability: 0.80
Lower Bound: 0.8908800
Upper Bound: 0.8908800
st-Reliability 0.8908800

Output of Dotson Algorithm - Success/Failure Events

+ 21121
+ 02112
+ 22102
- 00111
- 02110
+ 20202
- 22100
- 20001
- 20200

Shows the edge configuration of the accumulated events
Success event positive (+), failure event negative (-)
Working = 2', not working = V. doesn't matter = '1'
Edges are enumerated as ordered in the input edge list

FIGURE 6.2 EXAMPLE OF DOTSON'S METHOD

47

Calculation of Reliability

SUCCESS EVENTS FAILURE EVENTS

.9

<?I

0000 0

WORKING

ONOT WORING

-- - 4'- NOT oWN

FIGURE 6.3 EXAMPLE OF DOTSON'S METHOD (CONT'D)

48

Calculatzon of Reliabzlty

fewer success events than there are st-subgraphs. as used in the inclusion-exclusion

methods.

The method has some advantages. For one, it is easy to restrict the hop length

used in the path search routines [117. 118]. Thus for any integer n. 1 < !i < q, we can

use the method to estimate the n-hop reliability, Rel,,(G:s,t), the probability that the

nides s and t are connected in G by a path of length at most n. This is useful if for

some reason there is a limit ,n the number of relays which can be used in the node-t3-

node transmission of a message.

Also, it is easy to account for possible node failures in this algorithm, although

doing this directly is not a good idea. (Adding node failures to the original network

model increases the size of the state space by a factor of 2P.) Much more efficient is the

equivalent links method [117,1181, whereby one runs a modified version of the Dotson

method for a network initially modelling only edge failures, but instead of accumulating

the success/failure probabilities we will save the success/failure events to some

permanent storage file. This file can then be fitted to any edge probability function

P:E(G)--, R to compute or bound the st-reliability. Moreover, if we are also given a

node probability function Q: V(G)-R. then it is also possible to back-fit the edge events

generated by the Dotson algorithm to account for both node failures and edge failures.

This can be done at any time., even if there had originally been no intention of

modelling node failures, because of the concept of an "equivalent link" that combines

edge failures and node failures.

A brief description of the equivalent links method follows. Assuming (temporarily)

that the source node s is completely reliable (Q(s) = 1), we consider that a successful

communication occurs across a link exactly when both the edge in question and its

terminal (receiving) vertex are operational. This is equivalent to replacing the

probability P(e) of edge e = ti E E(G) by the product Q(c)P(c). Now, however, two

links are independent only if they have distinct terminal vertices. Therefore. if S is any

success event generated by Dotson's method, then

P(S) = Q(s) 1I P(S(v)). (6.18)
E V(G)

where S(,) is the restiiction of the event S to those links which terminate at vertex v.

Given that node r is operational. the links in S(c) are operational exactly when the

corresponding edges in the original network are operational. and this observation allows

us to express the probability of the event S(r) in terms of the original node and edge

49

Calculatzon of Reliability

probabilities. Let S+ (v), and S_(v), be the set of links in S(v) which are specified by S
to be operational, and to have failed, respectively. Let .=f1 S+(v) and

N = I I Then the probability of the restricted event S(v) is given by the
following back-fitting forumulas:

1 M = 0, N= 0

Q(v) 171 P(e) M l> 0-N=0
P(S(Lj) = S+(v) (6.19)

1-Q00)±Q(V) fi [1-P(e)] M=O,.N>0
e E S_(v)

Q(v) 1H P(e) 1i [1-P(e)] M>ON>0
e E S+(v) e E S_(v)

Of course if the nodes are completely reliable (Q(v) = 1 for all v E V(G)) this gives

the usual probability of the success event,

P(S) = 11 P(e) If [1-P(e)], (6.20)
eES+ eES

where S+ (resp S-) are those edges in S which are required to be operational (resp. to

have failed).

Similiar back-fitting formulas apply to the failure events generated by the Dotson
method, except that at the end of the calculations one should subtract the accumulated
failure probability from Q(s), instead of from 1.0, to obtain the upper bound on the st-

reliability.

The back-fitting formulas (6. 9) from the equivalent links method might also be

applied to other st-reliability algorithms which compute a symbolic, rather than a
numeric, representation of the reliability [111,113]. That is, provided sufficient
information is available in the description of the edge events, it would be possible to
incorporate node failures into the result. With equivalent links method, in fact, a file of
edge events generated using Dotson's method can even be used to calculate st-reliability
for networks with perfectly reliable edges and only unreliable nodes.

6.5 FACTORING METHODS

Edge factoring [120-1261 is a very attractive method for reliability calculations of
moderate size (20-25 vertices). It is based on the fact that for a given undirected

50

Calculation of Reliability

R(G) = P(e) R(G/e) + [1 - P(e)] R(G - e). (6.21)

Here R(G) is any of the reliability measures defined above, and G/e denotes the graph

obtained by contraction on e. That is. we remove edge e uv from the network and
identify the vertices u and v which were joined by e. In electrical engineering terms this

is best thought of as replacing the edge e by a short circuit. Analogously, G - e is

obtained by the replacement of e by an open circuit. (See Figure 6.4). Thus the

reliability problem is reduced to computing the reliability of two smaller networks.

e

Gle:

G: :

FIGURE 6.4 CONTRACTION ON EDGE e

We will consider only the 2-terminal reliability R(G) = Rel(G; s,t) here. The edge

factorization formula in this case will also apply to directed networks if the method is

restricted to suitable edges. One should factor only on an edge which either goes out of

the source or goes into the sink, because the edges in the opposite directions are not

relevant to the st-reliability [122]. These opposite edges can all be initially deleted from

the graph with no effect on R(G). Indeed, this should always be done, not only to the

original graph G. but also to G/e and G - e.

The factorization method is intrinsically recursive in that the process should be

repeated so that G/e and G - e are each factored on one of their edges. Since each step

reduces the size of the graphs in question by one edge (and one node for Gle), the

procedure will eventually result in trivial networks. However, in this form the use of

factorization is not practical since it would result in a binary tree of reduced graphs of

51

Calculation of Reliability

level q, meaning that 2 q - 1 such graphs would have to be processed before the recursion
was complete. (Some branches may terminate early if the source and the sink become

disconnected as a result of the edge del-tions, but this will not usually occur.)

What makes this method feasible is that it can be combined with edge reduction
methods to greatly reduce the size of the recursion tree. For example, contraction on
an edge frequently results in parallel edges (two edges incident on the same two nodes)
which can be combined into a single edge. Similarly, parallel reduction can result in
serial edges for which another reduction is possible. Because of the assumed
independence of the edge failures, the new edge probabilities can easily be determined
so that the reliability of the reduced network is the same as that of the original. These
edge reductions are shown in Figure 6.5.

p1

P1 +P2"P, P2

p2

/ / \PP2

p, P°2
Uf V

w

P, P2 P1P2

U. V 4. U V

P3
P4

FIGURE 6.5 PARALLEL AND SERIES EDGE REDUCTION (w # s,t)

Additional reductions are often possible, for if v $ s is such that indeg(v) = 0 (v is a
false start node) or if v t has outdeg(v) = 0 (v is a dead end node) then v and its
incident edges can be deleted from the network. Similarly, any pendant node other
than the sink and the source may be removed. None of these deletions has any effect on

the network reliability (see Figure 6.6).

52

Calculation of Reliability

foil

FIGURE 6.6 FALSE START, DEAD END. PENDANT NODES (v $ s.t)

Finally, for directed networks an important type of reduction can be used on

vertices which have only one incoming or outgoing edge (123]. Here, if the incoming

edge has an outgoing edge in the opposite direction, then that outgoing edge may be

removed if the node in question is not the source node. The other case is similar, and

examples are si .)wn in Figure 6.7.

I
/

ey/ /

V V

FIGURE 6.7 REMOVE EDGE e IF v 5 s.t

The implementation of an efficient factorizatio% algorithm is then to repeatedly

apply to G all the allowable edge reductions until no further simplifications are possible.

One then applies the factorization formula for some edge e E E(G), say one going out of

the source node, and repeats this process to G/c and G - e before they are factored on

one of their edges. The result is often a very rapid loss of edges and a drastically

53

Calculatzon of Reliability

one of their edges. The result is often a very rapid loss of edges and a drastically

pruned binary tree for the recursive function calls. For example, if either G/e or G - e

is ever a series-parallel graph. then the edge reduction wili reduce it to a trivial graph

and factorization is never applied again. While it is difficult to predict in advance how

great a reduction in the recursion tree actually takes place. these methods have proved

to be quite competitive with those already discussed.

One great advantage of this method is that very little computer memory is

required. Even when written in a recursive form in a language such as Pascal which

supports recursive function calls and uses available stack space for the storage of local

variables, memory availability should not be a problem. Roughly speaking, the worst-

case memory requirement is O(q2), but this will be completely dominated by the

exponential growth in the runtime.

A disadvantage is that a change in the edge probabilities require that the entire

algorithm be repeated. With edges being merged with one another or factored out of

the calculations, the edge probabilities are being combined in an analogous way and the

algorithm does not keep track of just how this was done. Vhile it might be possible to

save this information so as to reprocess the graph with a new set of edge probabilities,

doing so would require a large amount of storage to record all the branching in the

recursion tree, losing the low memory advantage.

Finally, the factorization formula (6.21) can be modified to apply to the situation

where both nodes and edges can fail independently, without greatly increasing the

complexity of the algorithm [117. 125]. The modifications are analogous to the

equivalent link method discussed in the previous section on the Dotson method. We

shall give a brief description of how this is done, and as before we let Q: V(G)--R be the

associated node reliabilities.

The initial problem here is that the contraction of G on an edge e = uv is to result

from a graph in which the communication from node u to node v is possible, hence u

and r' must be operational and should be merged into a new node that is completely

reliable. (That is, if either u or v had failed we could not have had a successful edge

connection across this link.) Thus the end points u and r as well as the edge e = uv

itself must all be operational, and this occurs with proal)bility

P'(0 = Q(u) P() Q(') (6.22)

because of the statistical independence. However, the failure of the link can be due to

either the failure of the edge itself or that of either of the two nodes. While we may not

54

Calculaton of Reliabdity

know which component has failed, we may delete the edge from the graph anyway since

the failure of a node implicitly implies the failure of all edges that are incident to it.

Thus the factorization formula will hold if the node reliabilities of the depleted graph

G - c are modified appropriately, which implies that we use

00 Q(,) [1-Q(u)P(e)] Q(v) -P'(e) (623)
1 - P'(e) 1 - P'(e)

with a similar modification for the node u.

The immediate difficulty with this approach is that the node failures in the graph

G-e are no longer statistically independent. We could avoid this problem if we only

factored on an edge e =uv for which the initial node u was perfectly reliable, for if

Q(u) = 1 then Q'(u) = 1 and

00 Q(v) [1-P(e)] (6.24)

1 -p(e)Q(v)

still describe statistically independent failures. However, we can always assume that

the source node s is perfectly reliable, so we will maintain statistical independence

throughout the process if. as in the Page-Perry algorithm, we always perform the

factorization on edges leaving the source node, so

R(G) = P'(e)R(G/e) + (I - P'(e)]R(G - e) (6.25)

for such edges, the edge and node reliabilities in the derived graphs G/e and G -e

having been adjusted as described above. (The true reliability Q(s) of the source node

is included as a factor of the st-reliability at the end of the recursion.)

As with the use of the factorization theorem for edge failures only, a practical

algorithm results only when it is combined with the edge reduction schemes described

above. However. all of these can still be applied, with only minor modifications. to

account for node failures as well. Aside from this observation, the factorization

calculation then proceeds exactly as before.

This modification of the factorization theorem and the equivalent links algorithm

using Dotson's method are the best available methods for computing st-reliability for

networks in which both node and vertex failures are modelled. Each has its own
advantages and disadvantages. The factorization technique is generally much faster

(when combined with the appropriate edge reduction algorithms) and uses very little

350

Calculation of Reliability

intermediate storage, but any change in the edge and/or node reliabilities require that

the algorithms be repeated from the beginning. The Dotson method. however, always

maintains bounds on the reliability. Moreover, if a permanent record of the

success/failure events is maintained then these can be fitted over and over again to any

distribution of tile component reliabilities without repeating the original computation.

Also. while it is possible to truncate tile recursion tree in the factorization method so as

to obtain tipper or lower bounds in a smaller time. the method does not allow a

continual monitoring of its progrcss as it proceeds.

6.6 APPROXIMATION AND SIMULATION

Since the exact calculation of the graph reliability is NP-hard. one inquires after

efficient methods for computing upper and lower bounds [127-1381. We have already

referred to some of these in an earlier section when we assumed a constant edge

probability. These reduced to some graph enumeration problems. although still NP-

hard. There are a number of algorithms of this type. We discuss in some detail a so-

called edge-packing algorithm which will apply to the case of arbitrary edge

probabilities [134. 135]. As above, we consider only the 2-terminal .st-reliability and use

the sets of st-paths and st-cutsets. We conclude with some references to Monte Carlo

applications to reliability calculations.

An edge-packing of a digraph G = G(E,V) is simply a collection {GI G} of

subgraphs of G which have no edges in common. Bounds on the st-reliability can be

obtained by imposing appropriate restrictions on the type of subgraphs considered. Let

us first suppose that each such subgraph is an st-path. say "k, and define the probability

of its success simply as the probability that each edge is operational. Thus. by the

independence assumption on the link failure events.

P(rIk)= rj P(e). (6.26)

Now if the nodes s and t are not connected in G (t not reachable from s) then all of

the .,t-paths , must fail. (The converse is false, however, since there may be

other .,t-paths in addition to the given 1.....,,.) Since these paths are assumed to be

edge-(tisjoint.

1 -Rel(G:.t) < I0I [1 - P(k) (6.27a)

or k=

.56

Calculation of Relability

so this type of edge-packing gives a lower bound on the st-reliability. Given such a

lower bound we can look to improve it by attempting to

(i) find an additional st-path r, +1 edge-disjoint from 7i,... r'

(ii) replace one of these st-paths by another which is more reliable but still

edge-disjoint from the remaining paths.

These two aims are somewhat contradictory, and it is not obvious how one should

choose an edge-packing by st-patls so as to optimize the lower bound. One should

note. however, that the maximum number of such paths is known from a variation of

Menger's theorem [3]:

The maximum number of edge-disjoint st-paths is equal
to the minimal number of edges in an st-cutset.

However, an st-path edge-packing using this maximum number of such paths does not

necessarily give a good lower bound. Given a choice between using two long paths and

one short path (or vice versa), either selection might be more reliable than the other

and result in a better lower bound. A recent article of Torrieri [137] presents some

algorithms for generating disjoint st-paths. Also note that since edge-disjoint st-paths

are necessarily also node-disjoint, it is easy to include node failures in the lower bound

estimates.

To obtain an upper bound we instead make use of an edge-packing {X, .. X

consisting of disjoint st-cutsets [138]. If the network is operating in such a way that t is

reachable from s. then each cutset must fail to separate t from s (but not conversely).

That is. each cutset \I, .. -',, must contain at least one operating link. For an st-cutset

\ let Q(\) denote the probability that V fails to disconnect t from s. Since it cannot be

true that every edge e e X has failed,

Q(0)=1- J' [1-P(e)], (6.28)

eE'

so we obtain an upper bound on the st-reliability

Rel(G:s.t) < [I Q(Xk). (6.29)
k=l

To improve this bound we would like to

(i) find an additional -t-cutset \, +1 edge-disjoint from Y.

(ii) replace one of the st-cutsets by another which has a smaller value

of Q but is still edge-disjoint from the others.

57

Calculatzon of Reliability

Again, these two goals are in opposition. Also. there is an elementary analogue of

Menger's theorem that holds in this situation [3]:

The maximum number of edge-disjoint st-cutsets is equal
to dist(s.t), the length of the shortest path from s to t

As with the st-path edge-packing, it is not clear how one should go about optimizing the

resulting upper bounds. although it is clear that only minimal st-cutsets should be

considered as candidates for the edge-pi.cking.

It is clear that for any network there is an optimal edge-packing of the desired type

which gives that best corresponding bound on the st-reliability, but the optimum will in

general depend on the edge-probabilities. No efficient algorithms are known for doing

this, but it is also not established that the problem is NP-hard. In any case these

procedures give a quick method of finding some bounds on Rel (G;s.t). It is not clear

how good these bounds are in general. but in test cases they are competitive with other

algorithms, and they do apply to networks with arbitrary edge probabilities. The

methods of Torrieri [137] and Wagner [13S] can be used to generate edge-packings of the

two types described here.

However, it is important to note that even the optimal bounds cannot be uniformly

good over all possible network inputs, for we have the following [43.120]:

Given a probabilistic network G. distinct nodes s. t E V(G),
and a number e > 0. find r such that I r - Rel (G;s,t)I < E.
This p.oblem is NP-hard. even for constant edge probabilities.

At this point, one might ask if the expected worst-case exponential growth in the

calculation of network reliability is typical behavior. For example. the well-known

simplex algorithm in linear programming does require an exponential runtime for some

input data sets, but such examples are somewhat contrived. For real-world applications

the simplex performance proves to be quite satisfactory. Unfortunately, this is

definitely not the case for the graph reliability algorithms. Even for very simple

network configurations. such as rectangular grid networks. the rapid growth of the run

time is obvious. (However. the linear programming problem is now known not to be

NP-hard. It does admit solution bv another algorithm which does have polynomial

complexity.)

58

Calculation of Rehabiity

Finally, a number of papers [139-145] have dealt with Monte Carlo methods in

simulating the operation of the network so as to obtain approximate values of the

network reliabilitv. We will not go into details here, but in principle this is simple to

do. Assuming statistical independence with given edge probabilities P(e), e E E(G), we

draw a sample of the state of the network, say X = (X 1,..., X,) with X, true or false

according to whether the i-th edge is operating or not. Then either one of the two

graph traversals described earlier (DFS or BFS) can quickly determine if s and t are

connected in the graph given by the configuration X, so t would be reachable from s

with probability P(X) if this is the case. Averaging this value over an ever larger

number of random samples of the state of the network gives increasingly accurate

approximations to the reliability Rel(G:s.t), and the variance of these approximations

can be estimated so as to monitor convergence as the sample size increases. Such

convergence, however, will be very slow.

59

Calculation of Reliability

4;;,

60

Other Performance Measures

7. OTHER PERFORMANCE MEASURES

The term "reliabilitv" has generally been reserved to refer only to the probability

of the network being connected with respect to some subset of edges. Other measures of

network performance can be used to quantify the susceptibility of the network to

component failures, but such terms as "vulnerability" or "survivability" have no

generally accepted mathematical definitions. In this section we introduce several other

graph invariants that have application to the general question of network vulnerability.

While these may not have the same intuitive appeal as that associated with st-path

connectivity, some are easier to calculate and are more appropriate to special types of

networks than the reliability measure.

We first discuss some quantities relating to somewhat different aspects of graph

connectivity as defined earlier, and in later sections consider other graph invariants

which are not immediately related to connectivity. Most of these, however, are

motivated by an attempt to quantify the effect that the removal of a set of nodes or

edges will have on the network. For example, knowing that A(G) = k for a given

connected graph G tells us only that there is some set E 0 C E(G) of k edges whose

removal will disconnect G. This savs nothing about how badly disrupted the network

might have become. Perhaps only one vertex has been isolated by these deletions, or

the network could have been bisected into two pieces of nearly equal size. One would

presumably prefer the first configuration so that the number of node pairs that can still

communicate is as large as possible. but the value of the edge-connectivity alone has

nothing to say about this.

There are a number of general schemes to quantify network survivability, most of

which give the change in some specific graph invariant as a function of the size of the

set of network components which were removed, which for us will generally mean edge

removal. Also. we will restrict ourselves to the deterministic aspects of these quantities

without reference to probabilistic questions of component failures. It should be

emphasized that much of this material is of recent origin, so the extent of its

application and usefulness to network analysis is not vet established. Finally, the

problem of finding efficient algorithms for the calculation of the invariants in question is

not at all well developed.

61

Other Performance M1easures

7.1 CONNECTIVITY FACTORS

If a graph is not connected it is normally analyzed one component at a time.

Quantities of particular interest would be the number of components and the size

(nodes and edges) of the largest and smallest components. Depending on the purpose of

the communication network in question we might want to have either the largest or the
smallest component of the graph to have as many nodes or edges possible. The worst

case is obviously that of a totally disconnected graph-every node is isolated and there

are no edges. Some measures of network vulnerability that have recently been

investigated serve as indicators of how susceptible a network is to being reduced to such

a configuration [146-152].

We shall describe here the node-connectivity factor (NCF), which represents the

average number of nodes that should be removed from the network in order that the

remaining subgraph be totally disconnected. This quantity is best defined recursively.

First. if G is disconnected and has components G 1, ... , G,,, then the NCF is simply

additive.

NCF(G) _ £ NCF(G,). (7.1)
i=1

For G a connected graph let k(G) be the size of the smallest set V 0 C V(G) for which

G - V" is disconnected and let \l... be the collection of all such node sets V 0.

then

NCF(G)- k(G) + NCF(G- x,) (7.2)

Thus the NCF of a connected graph G is defined in terms of its value on some of the

connected subgraphs of G. This sets up a recursion which stops when the cutset

removals have reduced G to the trivial case, a single isolated node, which has NCF

equal to zero.

The recursive calculation of this quantity results in a so-called decomposition

diagram.. which is just the recursion tree of connected subgraphs formed as the minimal

cutnode sets are deleted. Unfortunately. the size of this tree grows exponentially with
the size of the graph and it is possible to compute the NCF only for small networks.

Some research has been done to investigate the effect of terminating the recursive

branching prematurely [148] so as to obtain an approximate value of NCF(G). Another

method used to control the algorithm is to stop further function calls when connected

subgraphs of known type are generated [149, 1511. These would be special graphs (e.g..

62

Other Performance Measures

stars, complete graphs, cycles) whose NCF's are already known and have been stored in

some data base which is available to the algorithm. As soon as one of these graphs is

encountered in the decomposition diagram, then its NCF value can be obtained directly

and no further branching to disconnect this graph is necessary.

It is also possible to measure the importance of any individual node to the value of

the NCF by calculating a weighted sum of the number of terms (i.e., connected

subgraphs) of the decomposition diagram in which that node occurs. In this way one

has some measure of the relative contributions of the various v E V(G) to the network

connectivity. This information could be used to re-allocate the network links so as to

equalize the various contributions of the graph vertices, thereby making the network

less vulnerable to node failures (that is, increasing the value of the NCF).

A similary quantity, the link-connectivity factor (LCF), has also been investigated.

This uses the spanning trees of the components of G and is a measure of the average

contribution of the network links to maintaining a minimally connected configuration.

For a connected (pq)-graph G it is defined as

LCF(G) -) T(G), (7.3)

where T(G) is the number of spanning trees of G. (We remark that T(G) can be given

as the determinant of a matrix, analogous to the adjacency matrix, constructed directly

from the list of edge connections. Hence this number, although large, is not

prohibitively expensive to compute [20].) If G is not connected but has components

G1 G. then its LCF is given as [1421.

LCF(G) __ S, LCF(Gi) (7.4)

where Si is the number of edges in a spanning tree of G;, i = 1, ... , n and S is the

numbei of edges in a spanning tree for G (that is, one obtained by interconnecting the

spanning trees of the G,). It is easier to calculate than the NCF, as it requires only the

total number of spanning trees of each component of G, not the actual collection of all

such trees. Similarly, a method of rating the relative contributions of the individual

edges to the LCF can be defined. As with the NCF, network vulnerability would

presumably be decreased by revising the network links so as to spread these

contributions more evenly throughout the network and increase the value of LCF(G).

Typically these heuristics are used in the problem of designing or synthesizing
survivable networks or improving the survivability of a given network. That is, one has

at least some control over how the network is to be configured. or some freedom in

63

Other Performance Mleasures

rearranging a given configuration. The NCF and LCF values then can indicate the

advantages of one particular resource allocation versus another, hopefully leading to an

optimal arrangement. The result would be a network in which no one part of the

network is much more vulnerable .c component failure than any other [147].

7.2 NETWORK DIAMETER

Given a graph G. the diameter of G is the maximum hop distance supported by the

edge configuration,

Diarm(G) = Max{dist(u.-): u. v E V(G)}, (7.5)

which is to be interpreted as + zc if G is not connected. A number of recent researches

[153-166] have used this as a measure of connectivity, a graph with small diameter being

considered as better-connected than one with a larger diameter. This allows a more

quantitive measure of connectivity. For example, whereas a graph is connected if and

only if Diam(G) < + cc, a separating set of edges E o C E(G) is one for which

Diam(G - E0) = + oc. Rather than looking for such a drastic change. we may be more

careful and ask for more detail about the difference between Diam(G) and

Diam(G - E 0) for various subsets E 0 of E(G). Other authors have used the average

distance between nodes instead of the diameter [155. 158. 160, 165].

An early example of this is the so-called persistence of a connected graph., which is

defined to be the size of the smallest set E 0 C E(G) with Diam (G) < Diam(G - Eo).

That is,

Pers(G) = Min{ E0 :E0 c E(G), Diam(G) < Diam(G - E0)}. (7.6)

A number of related quantities will be considered in this section. mainly by specifying

the size of the set of nodes or edges deleted from the network. However, we shall

restrict ourselves primarily to edge deletions. This is because. as already noted earlier

for path connectivity, the removal of a set of nodes from a graph can give a wide variety

of distinctlv different results. An example of this for a connected graph is shown in

Figure 7.1. In this example. apart from from the case where the graph becomes

disconnected, node removal can either increase or decrease the diameter. This sort of

behavior is not possible for edge removal, which alway.s results in an increase in the

diameter [163, 166]. That is, the (dletion of edges can never improve the connectivity

measure, and this monotone p)roperty is very advantageous.

64

Other Performance Measures

V V

U W W

Diam (G) =3 Diam (G-u)= 2

V

Diam(G-v)=4 Diam(G-w)= +o0
FIGURE 7.1 CHANGE IN DIAMETER VIA NODE DELETION

A more informative quantity can be defined under the general concept of leverage,

[1531 which allows a very broad method of quantifying changes in a given graph

invariant with respect to the number of network components under consideration.

Restricting ourselves to the diameter measure and edge deletions, we can define the
leverage (more precisely, the leverage sequences) of G as

L-(k) = Max{Diam(G - Eo) - Diam(G) :E0 C E(G), I EoI = k}, (7.7a)

- (k) Min{Diam(G - E 0) - Diam(G) E0 C E(G), I E0 I = k}. (7.7b)

The negative superscript here refers to the fact that k edges of the graph have been
deleted, but we may well want to know the effect of adjoining edges to the network.

This leads to the definitions

L + (k) Max{Diam(G) - Diam(G + Ei): I E11 = k}, (7.8a)

e+ (k) Min{Diam(G) - Diam(G + El): I El I = k}. (7.8b)

Here the maximum and minimum are over all sets E, of k edges which are

complementary to G. (That is, we consider G as a subgraph of KP and add edges of KP
which are not in E(G).

65

Other Performance Measures

The leverage sequences have a lot of information in them and subsume many more

elementary graph-theoretic quantities. For example. the persistence is simply

Pers(G) = Min{k> 1:L-(k) > 0}. (7.9)

Knowing that k = Pers(G) tells us that the diameter of G is increased by the removal of

some set of k edges, but it does not indicate the magnitude of this increase. Another

example of this is the definition of a critical graph, which here means edge-critical (with

respect to the diameter). For this we want e+(1) > 0, so the diameter of G is increased

if any single edge of G is removed.

Definitions such as leverage are sometimes referred to as second-order

measurements [153, 154], meaning that the originally defined diameter is a first-order

quantity and the leverage is defined in terms of changes in that term. The number of

possibilities here is without limit, for in place of Diam(G) we could substitute any other

graph invariant (e.g., the number of components, minimal or maximal degree. etc). For

example we would get a mixed connectivity measure if we replaced Diam(G) with the

vertex-connectivity K(G)-we would be measuring the change in vertex- nnectivity as a

function of the number of edges being added or removed.

Research into the availability and applicability of these quantities is quite recent,

and most of the work to date has been devoted to finding upper bounds on the leverage

and determining its extremal values over a restricted class of graphs. We cite some of

these results to illustrate the behavior of these ideas.

(i) If A(G) _ 2 then L-(1) < Diam(G). Otherwise stated,

Diam(G - e) <_ 2 Diam(G) for all edges e E E(G).

(ii) If A(G) = n with G an n-regular graph. then L-(n - 1) > 0.

(iii) Of all the n-regular graphs with A(G) = n, the n-dimensional

hypercube Q, has the most resistance to diameter increases

by the removal of edges. Its leverage sequence is (0.0....,0,1, + o),

where the 1 occurs in the (n - l)th position.

With respect to this last example. we note that the n-dimensional hypercube Q,'

can be defined by specifying its node set to be the integers {0,12"-1) and

connecting nodes i and j whenever the binary representations of i and j differ in exactly

one binary digit. We have Diam(Q,) = n and no removal of less than n - 1 edges will

change the diameter. It is possible to increase the diameter to n + 1 by removal of

some set of n - 1 edges, and to disconnect Q,, by removing some other set of n + 1

66

Other Performance Measures

edges. Thus the graph Q, is an extremal graph for this leverage sequence in the class of

all n-regular graphs with edge-connectivity equal to n.

This is the type of behavior a network should have in order to be relatively

invulnerable to link failures, but the class of graphs referred to here is not appropriate

for mobile communication networks. More research needs to be done in applying these

concepts to communication networks, and for many of these quantities no efficient

algorithms are as yet available for their calculation.

7.3 MEASURES OF VULNERABILITY

Several other quantities of relevence to the vulnerability of a network can be

defined in terms of graph connectivity [167-179]. Given t > 0, a connected graph G is

said to be t-tough if for all V0 C V(G) for which G - V. is disconnected we have

t <_ VolI/c(G - Vo). (7.10)

The toughness 7(G) is given as [3]

r(G) Q Max{t > 0 : G is t-tough}. (7.11)

This graph invariant has been used in researches on Hamiltonian cycles and to obtain

lower bounds on the circumference (the length of the longest cycle) of a graph. As

defined above the toughness depends on the removal of a set of vertices of G, but an

obvious analogue with edge deletions gives meaning to the edge-toughness of a graph.

Another quantity of interest refers to the quantity m(G), the number of nodes in

the largest component of G. Using this we can consider the so-called integrity [146]. For

V0 C V(G) we define

Int(V) AIV I + m(G- V), (7.12)

and the integrity of the graph is

Int(G) a Min{Int (V0): V 0 C V(G)}. (7.13)

(Strictly speaking we shoold refer to this as the vertex-integrity of G, with a

corresponding edge-integrity given by deleting edges of G instead of vertices.)

Minimizing Int(V0) over V0 C V(G) involves a trade-off between forcing JV01 to be small

against making m(G - V0) small. Thus networks become less vulnerable to component

failures as the integrity measure becomes larger. for if G' is a subgraph of G then it is

always true that Int(G') < Int(G).

67

Other Performance Measures

Finally, the very definition of graph connectivity can be made relative to other

graph-theoretic conditions. That is, if p is some graph property satisfied by a connected

graph G, we could require that any disconnection of G result only in connected

components that also satisfied property p [162, 164].

Measures of graph vulnerability can also be given directly in terms of the vertex-to-

vertex connections specified by the edges of the graph. A set V0 C V(G) is said to be a

dominating set if every v E V(G) - V o is adjacent to some vertex v0 E V0 . A dominating

set of smallest cardinality is called a minimum dominating set and its cardinality,

denoted by o(G), is the domination number of G [4, 13, 20]. For example, if some of

the nodes in a communication network had only a receiving capability (they cannot

transmit, hence cannot act as relays), then the transmitting nodes should be a

dominating set-the receiver nodes must have direct communication links to the

transmitting vertices. We observe that if G' is a spanning subgraph of G, then

or(G') = or(G) and that consequently or(G - E0) _> c(G) for every set of edges Eo C E(G).

The domination number itself is not a good measure of vulnerability, for both the

complete graph K and any star have o(G) = 1. Of more interest [171] is the bondage

number b(G), which is the smallest number of edges whose removal increases the

domination number, or

b(G) = Min{ I E0 : E0 C E(G), a(G) < a(G - E0)} (7.14)

(This could also be defined in terms of a leverage measured with respect to the

domination number.) Thus the deletion of some set of b(G) edges will destroy the

domination properly of every minimum dominating set of G, requiring that at least one

more transmitter would be necessary to restore full communication.

Upper bounds on the bondage number can be given in terms of several other graph

invariants. including the domination number (T(G). If we assume that G is connected

and non-trivial, then the following results can be found in the literature:

(i) b(K,) = Fp/21

(ii) b(G) < p-1

(iii) b(G)<p+l-a(G)

(iv) If o'(G) > 2, then b(G) < A(G) [a(G) - 1] + 1

(v) b(G) < Min{deg(u) + deg(v)- 1: u.t, v E V(G), adjacent}

For good survivability. b(G) should be large, so trees and paths are most vulnerable

since their bondage number is small. In fact. for any tree T we have b(T) < 2. with

68

Other Performance Measures

b(T) = 1 if any v E V(T) is adjacent to two or more pendant nodes.

There are manv variations on the definition of dominating sets. For example,

given V 0 C V(G) and any integer k > 1, we could require that each v E V(G) - V o be

adjacent to at least k vertices of V 0. Alternatively, we could ask that each

v E V(G) - V 0 be within hop distance at most k to some tLo E V 0, and in both of these
situations the case k = 1 is the usual concept of domination. A slightly stronger

constraint is that these conditions hold for all v c V(G), not merely those in V(G) - Vo.

Also. one may consider the analogous concept of edge-domination, where Eo C E(G) is

said to dominate G if for every edge e E E(G) - E o there exists eo E Eo so that e and e0

are incident to some common node v0 E V(G).

A slightly different idea is that of a graph covering. Here V 0 C V(G) is said to be a

covering set of G if each e E E(G) is incident to some node t'0 E V 0. The covering

number. Cov(G), of G is then the cardinality of the smallest covering set of G.

Similarly, E0 C E(G) is an edge cover of G if every v E V(G) is incident to some edge

e0 E E. Note the duality between dominating sets and covering sets in that nodes

dominate other nodes of G but cover edges. Similarly, edges dominate other edges but

cover nodes of the graph [21].

A complementary concept is that of independence in a graph, which requires non-

adjacency where domination insists on adjacency. Thus V 0 C V(G) is an independent

set of nodes if no two elements of V0 are adjacent, and E 0 E E(G) is an independent

edge set if no two edges in E 0 are incident to a common vertex vo E V(G). (An

independent edge set is also called a matching of G.) The node- (resp. edge-)

independence number. Ind(G), is then the cardinality of the largest set of independent

nodes (resp. edges) in G. Clearly, the complement of a node cover of G is an

independent set, and conversely.

Numerous relationships hold among these extreme values. If we use the subscripts

e and v to distinguish between sets of edges and nodes of G, respectively, then the

following statements are true [22]:

Dom,(G) _ Ind,(G) Cov.(G). (7.15a)

Dom ,(G) < Ind,(G) <Cove(G). (7.15b)

Ind,(G) + Cov,(G) = p, (7.15c)

Ind,(G) + Cov,(G) = p. (7.15d)

69

Other Performance Measures

Also. as in the case of dominating sets, the notions of covering sets and
independent sets can be further extended and quantified, and leverage sequences can be
defined in terms of each one. These invariants have been used in applications to
network scheduling problems, particularly those involved with parallel data processing.
While they all have some relevence to network vulnerability in the broad sense, their
more direct bearing on vulnerability and survivability requires much more investigation.
Finally, some of these invariants again lead to computationally intractable problems.
For example, given a graph G = G(V, E) and an integer k < IV(G) I, the question of
deciding whether there exists a vertex covering of G having cardinality at most k is
known to be .VP-complete. and the same is true if we ask for an independent set of at
most k vertices. This is not the case for independent edges, however, as an algorithm
due to Edmonds [4,201 will find maximum matchings with complexity 0(p4). In
addition, some of the corresponding questions for stochastic graphs can be shown to be
NP-hard [167].

.0

References

8. REFERENCES

8.1 GRAPH THEORY - GENERAL REFERENCES

The books cited here all discuss the various aspects of graph theory in general, not

merely from a communication network point of view. The 1969 textbook by Harary has

become a standard in this field, and we try to follow its notation as much as possible.

Buckley and Harary contains a wealth of recently obtained material related to the hop

distance and graph invariants defined in terms of distance properties, much of which

may have applications to communications networks. Harary, Norman and Cartwright

has a very complete discussion of connectivity in directed networks. The Capobianco

and Molluzzo book presents a number of illuminative examples of relations holding

among common graph invariants. such as node and edge connectivity, including counter

examples which indicate the extent to which these results are best-possible.

[1] C. Berge, Graphs, North-Holland, New York, 1985.

[2] B. Bollobas, Graph Theory: An Introductory Course, Springer-Verlag, New York,
1979.

[3] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Reading,
Massachusetts, 1990

[4] M. Capobianco and J. C. Molluzzo, Examples and Counterexamples in Graph
Theory, North-Holland, New York, 1978

[5] W.-K. Chen, Theory of Nets: Flows in Networks, John Wiley and Sons, New
York, 1990

[6] N. Deo, Graph Theory with Applications to Engineering and Computer Science,
Prentice-Hall, Englewood Cliffs, New Jersey, 1974

[7] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969

[8] F. Harary, R. Z. Norman and D. Cartwright, Structural Models: An Introduction
to the Theory of Directed Graphs, John Wiley and Sons, New York, 1965

[9] F. Harary and E. M. Palmer. Graphical Enumeration, Academic Press, New York,
1973

10] D. F. Robinson and L. R. Foulds, Digraphs : Theory and Techniques, Gordon and
Breach, New York. 1980

8.2 ALGORITHMS FOR GRAPHS AND NETWORKS

Graph-theoretic algorithms are given good coverage by Tarjan and in the two books

71

Refrrences

by Even, but Gibbons is probably the best introduction to this subject. Colbourn's

book is the only general text available at this time which covers network reliability from

the point of view of most interest to this study. McHugh includes a chapter on the

implementation of graph algorithis for concurrent and parallel computation.

Tenenbaum et al. discuss the implementation of some of these algorithms in the Pascal

and C languages. See also [11, 13. 16] for more discussion of using data .tructures and

graph algorithms in these computer languages. Christofides discusses some important

graph algorithms in much more detail, including the travelling salesman and

Hamiltonian tour problems. A number of these works also treat some topics involved

with flows in networks, a subject which we hav " not discussed here but one which does

have important applications to network connectivity, as discussed in the article bv

Estahanian and Hakimi.

[11] L. Ammeraal. Programs and Data Structures in C..John \Viley and Sons. New
York. 1987

[12] W. Amsbury, Data Structures: From Arrays to Priority Queues. Wadsworth.
Belmont. California. 1983

[13] N. Christofides. Graph Thory: Ar Algorithmic Approach. Academic Press, New
York. 1973

[141 C. J. Colbourn. The Combinatorcs of Network Reliability. Oxford University
Press. London. 1987

[15] N. Dale and S. C. Lilly. Pascal Plus Data Structures (2nd edition), D. C. Heath.
Lexington. Massachusetts. 19SS

[16] . Esakov and T. Weiss. Data Structures: An Advanced approach Using C.
Prentice-Hall. Englewood Cliffs. New Jersey. 1989

(171 A. H. Estahanian and S. L. Hakimi. "'On Computing the Connectivity of Graphs
and Digraphs*'. Networks. vol. 14 (1984). pp 355-366.

[1S] S. Even. Graph Algorithms. Computer Science Press. Rockville. Maryland. 1979

[19 S. Even. Algorithmic Combinatorics. Macmillan. New York. 1973

[20] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985

[211 J. A. McHugh. Algorithmic Graph Theory, Prentice Hall. Englewood Cliffs. New
.Jersev. 1990

[221 U. Manber. Introduction to Alqorithms. Addison-Wesley. Reading, Massachusetts.
1939

r23] E. Minieka. Optm..tzation? AlqorIthms for Networks and Graphs. Marcel Dekker.
New York. 1978

'24] C. H. Papadimitriou and K. Steilititz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hail. Englewood Cliffs. New Jerse.. 1982

'25i M. N. S. Swamv and K. Thulasiraman. Graphs . Networks. and Algorithms. John
Wiley and Sons. Nelw York. 19S1

72

References

[26] R. E. Tarjan. Data Structures and Network Algorithms, SIAM. Philadelphia.
Pennsylvania. 1983

[27] A. M. Tenenbaum and M. J. Augenstein. Data Structures Using Pascal (2nd
edition), Prentice-Hall, Englewood C!iffs, New Jersey, 1986

[281 A. M. Tenenbaum. Y. Langsarn. and M. J. Augenstein. Data Structures Using C.
Prentice-Hall. Englewood Cliffs. New Jersey, 1990

8.3 COMPUTATIONAL COMPLEXITY

The references below all discuss the efficiency and complexity of computer

algorithms in general. not merely the graph-theoretic algorithms. Here the two books

by Aho et al. and KInuth's three volume series are the best general references to the

theory and practice of computer algorithms. Garev and ,Johnson is the best overall

guide to .\P-completeness and provides a compendium of many of those problems that

were known to be NP-complete as of 1979. There are now more than 1000 known NP-

complete problems. many of them in graph theory, and dozens more are discovered

every year. so this catalogue has rapidly become out of date. As a result there is now

an ongoing column on NP-complete problems by Johnson which appears several times a

year in the journal Algorithms. A number of these columns have discussed NP-

completeness for problems in communication networks and reliability. Harel is a very

good and exceptionally readable overall account of the current state of the art in

algorithmics and has a good account of the problems that arise in designing and

verifying algorithms for parallel processing. The book by Sedgewick also comes in two

other editions which give more details of the implementations of these algorithms in

either Pascal or in C.

[291 A. V. Aho. J. E. Hopcroft. and J. D. Ullman, The Design and Analysis of
Computer Programs, Addison-Wesley, Reading, Massachusetts. 1974

[301 A. V. Aho. J. E. Hopcroft. and J. D. Ullman. Data Structures and Algorithms.
Addison-Wesley. Reading, Massachusetts, 1983

[31] T. H. Cormen. C. E. Leiserson. and R. L. Rivest. Introduction to Algorithms. MIT
Press. Cambridge Massachusetts. 1990

[32] M. R. Garev and D. S. Johnson. Computers and Intractibility: A Guide to the
Theory of NP-Completeness. Freeman. San Francisco. California. 1979

[331 D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, Reading.
Massachusetts. 1987

[34] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms, Computer
Science Press. Rockville, Maryland. 1978

-3

References

[35] D. S. Johnson. "'The NP-Completeness Column: An Ongoing Guide". Algorithms
(this column appears several times per year)

[36] D. E. Knuth. The Art of Computing: Addison-Wesley. Reading, MA
Vol 1: Fundamental Algorithms (2nd edition), 1973
Vol 2: Seminumerical Algorithms (2nd edition). 1981
Vol 3: Sorting and Searching, 1973

[37] R. Sedgewick. Algorithms (2nd edition). Addison-Wesley, 198S

[38] H. S. Wilf. Algorithms and Complexity, Prentice-Hall. Englewood Cliffs,
New Jersey. 1986

8.4 NP-HARD AND NP-COMPLETE PROBLEMS

Many of the problems that are concerned with calculating network reliability are

NP-hard or NP-complete. and the various articles by Ball or Provan are the best

sources for this material. Johnson's columns on NP-complete problems discuss a

number of these, while the paper of Valiant is concerned with the computational

complexity of some counting problems in the theory of graphs and networks.

[39] E. Arikan. "Some Complexity Results about Packet Radio Networks". IEEE
Transactions on Information Theory,Vol 30 (1984), pp 681-685.

[40] M. 0. Ball. "Complexity of Network Reliability Computations", Networks.
Vol 10, (1980). pp 153-165.

[41] M. 0. Ball, -'Computational Complexity of Network Reliability Analysis: An
Overview". IEEE Transactions on Reliability, Vol 35, (1986), pp 230-239.

[42] NN. Chen and N. Huang, "The Strongly Connecting Problem on Multihop Packet
Radio Networks". IEEE Transactions on Communications. Vol 37, (1989),
pp 293-295.

[43] D. S. Johnson, 'The NP-Completeness Column: An Ongoing Guide", Algorithms,
Vol 3, (1982), pp 182-195.

Algorithms. 5 (1984). pp 595-609.
Algorithms. 6 (1985). pp 145-159.
Algorithms. 6 (1985). pp 434-451.
Algorithms. S (1987), pp 438-448.

[44] J. S. Provan and M. 0. Ball. "The Complexity of Counting Cuts and of
Computing the Probability that a Graph is Connected". SIAM Journal of
Computation.Vol 12 (1983). pp 777-788.

[45] .J. S. Provan and M. 0. Ball. 'Computing Network Reliability in Time
Polynomial in the Number of Cuts". Operations Research. Vol 32, (1984).
pp 516-526.

[46] J. S. Provan. "'The Complexity of Reliability Computations in Planar and Acyclic
Graphs". SIAM Journal of Computation. Vol 12. (1983). pp 777-788.

[47] L. G. Valiant. "The Complexity of Enumeration and Reliability Problems". SIAM
Journal of Computzng, Vol S. (1979). pp 410-421.

74

References

8.5 DEPENDENT FAILURE EVENTS

Problems concerning the statistical dependence of the network component failures

are treated in the references below but are not discussed in any detail in this report.

One should note that the assumption of independent failures can lead to either an

overly pessimistic or an overly optimistic estimate of the true network reliability. The

recent paper by Egeland and Huseby gives some results as to how one might determine

which of these is the case.

[48] J. Y. Assous. -'First- and Second-Order Bounds on Terminal Reliability",
Networks. Vol 16. (1986), pp 319-329.

[49] T. Egeland and A. B. Huseby, "On Dependence and Reliability Computation",
Networks. Vol 21. (1991), pp 321-546.

[50] H. Heffes and A. Kumar. "Incorporating Dependent Node Damage in
Deterministic Connectivity Analysis and Synthesis of Networks", Networks,
Vol 16. (1986), pp 51-65.

[51] Y. F. Lam and V. Li, "On Network Reliability Calculations with Dependent
Failures". Proceedings of the IEEE 1983 Global Telecommunications Conference
(GTC '33), San Diego. California, November, 1977, pp 1499-1503.

[52] Y. F. Lam and V. Li, "Reliability Modeling and Analysis of Communication
Networks with Dependent Failures", Proceedings IEEE INFOCOM, 1985,
pp 196-199.

[53] Y. F. Lam and V. Li, "Reliability Modeling and Analysis of Communication
Networks with Dependent Failures". IEEE Transactions on Communications,
Vol 34. (1986). pp 82-84.

[54] 1K. V. Lee and V. 0. K. Li. "A Path-Based Approach for Analyzing Reliability of
Systems with Dependent Failures and Multinode Components", Proceedings IEEE
INFOCOM. 1990. pp 495-503.

[53] L. B. Page and J. E. Perry, "A Model for System Reliability with Common-Cause
Failures". IEEE Transactions on Reliability,Vol 38, (1989), pp 406-410.

[361 E. Zemel. "Polynomial Algorithms tr Estimation of Network Reliability",
Networks. Vol 12. (1982), pp 439-452.

8.6 NETWORK RELIABILITY - SPECIAL CASES

Most of the probabilistic measures of network connectivity lead to computability

problems that are .NP-hard. so there has been considerable effort in searching for

restricted classes of networks for which there are reliability algorithms with a smaller

order of complexity. Thus the papers of Boesch and Pullen consider only constant

probability of edge failures. This may reduce the problem to one in graph enumeration,

753

References

but this problem still has non-polynoinial complexity. Similarly, the article by

Bienstock considers only planar networks. and he proves the existence of an algoroithm

whose complexity grows exponentially in the square root of p, rather than p itself.

This is still very far from having polynomial growth. and to obtain that complexity

even more drastic restrictions are necessary, as shown in the articles by Agrawal and

Satayanarana and by Politof and Satyanarayana. Even very regular grid networks in

the xy-plane yields NP-hard problems, as shown by the Clark and Colbourn article.

[57] A. Agrawal and A. Satavanarana. "'An O(IEI) Time Algorithm for Computing the
Relaibility of a Class of Directed Networks". Operations Research. Vol 32 (1984),
pp 493-515.

[38] D. Bienstock. "An Algorithm for Reliability Analysis of Planar Graphs".
Networks, Vol 16, (1986). pp 411-422.

[59] F. Beichelt and P. Tittman. "A Generalized Reduction Method for the
Connectedness Probability of Stochastic Networks", IEEE Transactions on
Reliability, Vol 40. (1991), pp 198-204.

[60] F. T. Boesch, "On Unreliability Polynomials and Graph Connectivity in Reliable
Network Synthesis". Journal of Graph Theory, Vol 10, (1988), pp 339-352.

[61] A. Bobbio andf A. Premoli. "Fast Algorithm for Unavailibility and Sensitivity
Analysis of Series-Parallel Systems", IEEE Transactions on Reliability. Vol 31
(1982), pp 359-361.

[62] B. N. Clark and C. L. Colbourn. "Unit Disk Graphs", Discrete Math., Vol 86
(1990), pp 165-177.

[63] C. L. Colbourn, "Network Resiliance". SIAM Journal of Algebra and Discrete
Math. Vol 8. (1987), pp 404-409.

[64] W. H. Debany, P. K. Varshney, and C. R. P. Hartman, "Network Reliability
Evaluation Using ProbabilityExpressions". IEEE Transactions on Reliability,
Vol 35, (1986), pp 161-166.

[63] T. Politof and A. Satyanarayana. "A Linear-Time Algorithm to Compute the
Reliability of Planar Cube-free Networks". IEEE Transactions on Reliability,
Vol 39. (1990), pp 557-563.

[66] K. W. Pullen. "A Random Network Model of Message Transmission", Networks.
Vol 16. (1986), pp 397-409.

[67] 0. W. W. Yang. "Terminal Pair Reliability of Tree-Type Computer
Communication Networks", Proceedings of the IEEE 1991 Military
Communications Conference (MILCOM '91), November, 1991.

8.7 SURVEY ARTICLES AND BIBLIOGRAPHIES

Some previous surveys have been devoted to different aspect of network reliability.

the most recent of which seems to be that of Lam and Li. which dealt especially with

76

References

some problems of the statistical dependence of the network component failures. Also, a

nunber of the earlier studies. such as the one by Boesch and those of Frank et al., were

primarily concerned with applications of reliability calculations or estinlates to the

overall question of optimal network design. Brigham and Dutton give an exhaustive

listing and cross-referencing of relations holding among the most common graph

invariants. including the node and edge connectivities. The two surveys of Hedetniemi

et al. contain quite extensive bibliographies of the current literature in several aspects of

graph theory that are very relevant to communications networks, although not

immediately applicable to reliability itself.

[68] A. Agrawal and RI. E. Barlow. -'A Survey of Network Reliability and Domination
Theory". Operations Research. Vol 32. (1984), pp 478-492.

[69] F. T. Boesch. "Synthesis of Reliable Networks - A Survey", IEEE Transactions
on. Reliability, Vol 35, (1986). pp 240-246.

[70] R. C. Brigham and D. Dutton,
a. "Relatiuns between Graph Invariants", Networks. Vol 15.(1985),

pp 73-107.

b. "Supplement to *Relations between Graph Invariants' ", Networks,
Vol 21, (1991) pp 421-455.

[711 H. Frank and W. Chou. -Topological Optimization of Computer Networks",
Proceedings of the IEEE, Vol 60. (1972), pp 1385-1387.

[72] H. Frank. "Survivability Analysis of Command and Control Communications
Networks". IEEE Transactions on Communications. Vol 22. (1974),

Part I. pp 5389-595.
Part II. pp 596-605.

[73] B. L. Golden and T. L. Magnanti. "Deterministic Network Optimization: A
Bibliography", Networks, Vol 7. (1977), pp 149-183.

[741 S. M. Hedetniemi. S. T. Hedetniemi. and A. L. Liestman, "A Survey of Gossiping
and Broadcasting in Communication Networks", Networks, Vol 18, (1988),
pp 319-349.

[75] S. T. Hedetniemi and R. C. Lasker. "Bibliography on Dominatinn in Graphs and
Some Basic Definitions of Domination Parameters". Discrete Math.. Vol 86
(1990). pp 257-277.

[76] C. L. Hwang. F. A. Tillman, ;,nd M. H. Lee, "System Reliability Evaluation
Techniques for Complex Large Systems - A Review", IEEE Transactions on
Reliability. Vol 30. (1981). pp 416-423.

[77] Y. F. Lam and V. Li. "A Survey of Network Reliability Modeling and
Calculations". Proceedings of the IEEE 1986 Military Communications
Conference (MILCOMM '86). Section 1.2.

[78] M. 0. Locks. "'Recursive Disjoint Products: A Review of Three Algorithms".
IEEE Transactions on Reliability, Vol 31. (1982), pp 33-35.

[79] M. 0. Locks. "'Recent Developments in Computing of System Reliability". IEEE
Transactions ,-n Reliability, Vol 34. (1985). pp 425-436.

-7

Referenccs

[80] A. Politof and A. Satyanaravana. "Efficient Algorithms for Reliability Analysis of
Planar Networks - A Survey". IEEE Transactions on Reliability, Vol 35. (1986).
pp 252-259.

[81] S. Rai and D. P. Agrawal (eds). "Distributed Computing Network Reliability".
IEEE Computer Press. 1990.

[S21 P. .J. Slater. "A Suninary of Results ol Pair-Connected Reliability".
Contemporary Mathenmatics. American Mathematical Society. 1989. pp 145-152.

8.8 PARALLEL GRAPH ALGORITHMS

The area of algorithms for parallel computation is a relatively new one that is the

subject of intensive research and is not at all well understood at this time. The

)roblems involved are all the more difficult because of the large number of computer

archite employed and proposed for concurrent and parallel machines. Indeed.
some of these have been specifically designed with just one particular algorithm in

mind. such as butterfly networks for FFT (fast Fourier transform) calculations or

bitonic networks for fast parallel sorts. Nevertheless. numerous parallel

implementations of the basic graph-theoretic algorithms have been proposed. The

references cited here are provided merely to give some idea of what is currently being

dlone along these lines.

'R31 .J. Bentley. "A Parallel Algorithm for Constructing Minimal Spanning Trees".

Journal of Algorithms. Vol 1. (1980), pp 51-59.

[84] S. K. Das, N. Deo. and S. Prasud. "'Parallel Graph Algorithms for Hypercube
Computers". Parallel Computting. Vol 13. (1990). pp 143-158&

[S5] S. 1K. Das. N. Deo. and S. Prasud. 'Two Minimum Spanning Forest Algorithm-,

Based on Fixed Size Hypercube Computers". Parallel Computing, Vol 15 (1990),
pp 179-185.

[86] X. He. "Efficient Parallel Algorithms for Series-Parallel Graphs". Journal of
Algonlthmns. Vol 12. (1991). pp 409-430.

r871 C. P. IKruskal. L. Rudolph. and 'M. Stir. "Efficient Parallel Algorithms for Graph
Problems", Algoithm ca. Vol 5. (1990). pp 43-64.

1881 M. .J. Quinn and N . Deo. ParallMl Graph Algorithms". ACM Computer Surveys,
Vol 16, (1984). pp 319-348.

L89] Y. Shiloach and U. Vishkin. 'An O(logr) Parallel Connectivity Algorithm",
Journal of Algorithms. Vol 3. (19S2). pp 57-67.

8.9 STATE SPACE ENUME1RATION

,-\s nenti,,ile(l in th t ':xt. re tate ,' ,,MCC oliuileratio l is not teasable excc,)t for either

References

very small or extremely reliable networks. The two papers cited here describe an

algorithm (ORDER) that is useful in the latter situation.

[90] Y. F. Lam and V. Li, "An Improved Algorithm for Performance Analysis of
Networks with Unreliable Components". IEEE Transactions on Communications,
Vol 34. (1986), pp 496-497.

[91] V. Li and .1. A. Silvester. "'Performance Analysis of Networks with Unreliable
Components". IEEE Transactions on Communications, Vol 32,(1984),
pp 1105-1110.

3.10 INCLUSION-EXCLUSION METHODS

Inclusion-exclusion methods were used at an early date by Cavers to estimate

networks reliability, but as originally described, these were impractical for all but the

very smallest networks. The seminal article by Satyanarayana and Prabhakar made

this method practical for intermediate sized networks by greatly reducing the number of

terms required in computing the network reliability by applying the inclusion-exclusion

principle to the set of st-paths or st-cutsets. The papers by Shier and Whited give

recent algorithms for the enumeration of st-cutsets, of which there are generally fewer

than there are st-paths.

[92] J. A. Cavers. "Cutset Manipulations for Communication Network Reliability
Estimation", IEEE Transactions on Communications, Vol 23, (1975),
pp 569-5375.

[931 S. P. Jain and K. Gopal. "An Efficient Algorithm for Computing Global
Reliablity of a Network". IEEE Transactions on Reliability, Vol 37, (1988),
pp 488-492.

[94] M. 0. Locks, "Recursive Disjoint Products. Inclusion-Exclusion, and Min-Cut
Approximations". IEEE Transactions on Reliability, Vol 29, (1980),
pp 386-371.

[93] A. Satyanarayana and A. Prabhakar, "New Topological Formula and Rapid
Algorithm for Reliability Analysis of Complex Networks", IEEE Transactions on
Reliability. Vol 27. (1978). pp 23-32.

[96] A. Satyanaravana. "A Unified Formula for Analysis of Some Network Reliability
Problems". IEEE Transactions on Reliability,Vol 31 (1982), pp 23-32.

[97] D. R. Shier and D. E. Whited. "Algorithms for Generating Minimal Cutsets by
Inversion". IEEE Transactions on Reliability,%Vol 34, (1985), pp 314-31,.

[98] D. R. Shier and D. E. Whited. "Iterative Methods for Generating Minimal
Cutsets in Directed Graphs", Networks. Vol 16. (1986), pp 133-147.

[99] D. R. Shier and D. E. Whited. "Algebraic Methods Applied to Network
Reliability Problems". SIAM Journal of Algebra and Discrete Math.. Vol 1.
(1987). pp 251-262.

79

References

[100] D. R. Shier. -Algebraic Methods for Bounding Network Reliability", DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. Vol 5. (1991),
pp 245-259.

8.11 DISJOINT SUMS AND BOOLEAN MINIMIZATION

That methods using disjoint sums were intimately related to the inclusion-exclusion

methods was clear from the beginning. The improvements in the implementation of

this method have been in the consistent application of Boolean analysis to reduce the

number of terms required to represent the success and failure events for the network in

question. The recent papers of Soh and Rai compares different ways of ordering the

path or cutset events prior to accumulating the probabilities of the success or failure.

(101] J. A. Abraham. "An Improved Algorithm for Network Reliabilty"., IEEE
Transactions on Reliability, Vol 28, (1979), pp 58-61.

[102] _XI. 0. Ball and J. S. Provan. "Disjoint Products and Efficient Computation of
Reliability", Operations Research. Vol 36, (1988), pp 703-716.

[103] F. Beichelt and L. Spross. "An Improved Abraham-Method for Generating
Disjoint Sums". IEEE Transactions on Reliability, Vol 36. (1987), pp 70-74.

[1041 F. Beichelt and L. Spross, "Comment on 'An Improved Abraham-Method for
Generating Disjoint Sums"', IEEE Transactions on Reliability, Vol 38 (1989), pp
422-424.

[105] F. Beichelt and L. Spross. "Bounds on the Reliability of Binary Coherent
Systems". IEEE Transactions on Reliability, Vol 38, (1989"), pp 425-427.

[106] S. Hariri and C. S. Raghavendra. "SYREL: A Symbolic Reliability Algorithm
Based on Path and Cutset Methods". IEEE Transactions on Computers.
Vol 36. (1987), pp 1224-1232.

[107] K. D. Heidtmann. "Smaller Sums of Disjoint Products by Subproduct Inversion",
IEEE Transactions on Reliability, Vol 38, (1989), pp 305-311.

[108] R. Sahner and K. Trivedi. "Performance and Reliability Analysis Using Directed
Acyclic Graphs". IEEE Transactions on Software Engineering, Vol 18, (1987), pp
1165-1114.

[109] S. Soh and S. Rai, "A Computer Approach for Reliability Evaluation of
Telecommunication Networks with Heterogeneous Link-Capacities". IEEE
Transactions on Reliability, Vol 40, (1991), pp 441-451.

[110] S. Soh and S. Rai. "Survivability Analysis of Complex Computer-Network with
Heterogeneous Link-Capacities". Proceedings Ann. Reliability and Maintainability
Symposium., (1991). pp 374-379.

[111] S. Soh and S. Rai. "CAREL: Computer Aided Reliability Evaluator for
Distributed Computer Networks". IEEE Transactions on Parallel and Distributed
Systems. Vol 2. (1991). pp 199-213.

SO

References

[112] S. Soh and S. Rai. "Experimental Results on Preprocessing of Path/Cut Terms in
Sums of Disjoint Product Technique", Proceedings of the IEEE INFOCOMM
1991 Conference. Bal Harbor, Florida, April 1991, pp 0533-0542.

[113] M. Veeraraghavan and K. Trivedi, "An Improved Algorithm for Symbolic
Reliability Analvsis", IEEE Transactions on Reliability, Vol 40, (1991),
pp 347-358.

[114] J. M. Wilson. 'An Improved Minimizing Algorithm for Sum of Disjoint
Products", IEEE Transactions on Reliability, Vol 39, (1990), pp 42-45.

8.12 DOTSON'S METHOD

Dotson's method has been available for as long as most of the other methods, but it

does not seem to have been used as much, in spite of the advantages it yields via upper

and lower bounds on the network reliability. The 1988 paper of Yoo and Deo showed it

to be quite competitive with the other algorithms tested therein, and that of Torrieri

indicates how easy it is to adapt Dotson's approach to account for node failures (as well

as edge failures) without any of the problems associated with the large increase in the

size of the state space of the network.

(1151 W. P. Dotson, "An Analysis and Optimization Technique for Probabilistic
Graphs", PhD Dissertation. Air Force Institute of Technology, Wright Patterson
AFB, August 1976 (DTIC access no AD-A028398; University Microfilms no
7709474).

[11] W. P. Dotson and J. 0. Gobien, "A New Analysis Technique for Probabilistic
Graphs-. IEEE Transactions on Circuits and Systems, Vol 26, (1979),
pp 855-865.

[117] J. S. Lee Associates, "Development of Analysis Models for MSE Network
Performance in the Tactical Environment",
Vol 1: Automated Methods for Calculating Connectivity and Link Flow
Vol 2: Implementation of an Equivalent-Links Concept
Vol 3: Techniques for Analyzing Large Networks

[118] D. Torrieri. "An Efficient Algorithm for the Calculation of Node-Pair Reliability",
Proceedings of the IEEE 1991 Military Communications Conference (MILCOM
'91), November, 1991.

[119] Y. B. Yoo and N. Deo, "A Comparison of Algorithms for Terminal Pair
Reli.bilitv". IEEE Transactions on ReliabilityVol 37,(1988), pp 210-215.

8.13 FACTORIZATION METHODS

Factorization methods have long been considered as very attractive candidates for

reliability algorithms because of their relatively small storage requirements. but have

81

References

been efficiently implemented only recently, as best described in a series of papers by

Page and Perry. The important point here seems to be the choice of edge reductions to

apply at each point in the recursive function call. The article by Johnson gives some

comparisons on the size of the recursion trees generated by calls to the edge

factorizations for various choices of the edge reductions that are to be performed prior

to each factorization.

[120] T. A. Feo and R. Johnson. "'Partial Factoring: An Efficient Algorithm for
Approximating 2-Terminal Reliability on Complete Graphs", IEEE Transactions
on Reliability, Vol 39. (1990). pp 290-295.

p12 1] R. Johnson. "Network Reliability and Acyclic Orientations", Networks, Vol 14
(1984), pp 489-505.

'122] L. B. Page and J. E. Perry, "A Practical Implementation of the Factor Theorem
for Network Reliability", IEEE Transactions on Reliability, Vol 37, (1988),
pp 259-267.

[123] L. B. Page and J. E. Perry, "Reliability of Directed Networks using the Factor
Theorem", IEEE Transactions on Reliability, Vol 38, (1989), pp 556-562.

[124] A. Satyanarayana and M. K. Chang, "Network Reliability and the Factoring
Theorem", Networks, Vol 20, (1983), pp 107-120.

[125] 0. R. Theologou and J. G. Carlier. "Factoring & Reduction for Networks with
Imperfect Vertices", IEEE Transactions on Reliability, Vol 40, (19911'
pp 210-217.

[126] R. K. Wood, "Factoring Algorithms for Computing K-terminal Network
Reliability". IEEE Transactions on Reliability, Vol 35, (1986), pp 269-278.

8.14 BOUNDS AND APPROXIMATIONS

In view of the computational intractability of the network reliability calculations

for general probabilistic graphs. there are a very large number of papers devoted to the

problem of obtaining accurate estimates of the reliability. Early versions of these

assumed a constant probability of edge failure and were intent on computing the

coefficients of the corresponding reliability polynomial, but these coefficient problems

are equivalent to some graph enumeration problems which were also shown to be

intractable. More recent methods apply to networks with arbitrary failure probabilities,

and the edge-packing approach of Colbourn et al. is of most interest here.

[127] H. M. AboElFotoh and C. .. Colbourn. "Series-Parallel Bounds for the Two-
Terminal Reliability Problem", ORSA Journal on Computing, Vol 1, (1989), pp
209-222.

S2

References

[128] H. N1. AboElFotoh and C. J. Colbourn, "Computing 2-Terminal Reliability for
Radio-Broadcast Networks", IEEE Transactions on Reliability, Vol 38. (1989). pp
538-335.

[129] NI. 0. Ball and J. S. Provan, "Calculating Bounds on Reachability and
Connectedness in Stochastic Networks", Networks, Vol 13, (1983), pp 253-273.

[130] NI. 0. Ball and .. S. Provan. "Bounds on the Reliability Polynomial for Shellable
Independence Systems", SIAM Journal of Algebra and Discrete Math. Vol 3
(1981), pp 166-181.

[131] T. B. Brecht and C. J. Colbourn, "Improving Reliability Bounds in Computer
Networks", Networks. Vol 16. (1986), pp 369-380.

[132] T. B. Brecht and C. J. Colbourn, "Multplicative Improvements in Network
Reliability Bounds", Networks. Vol 19, (1989), pp 521-529.

[133] T. B. Brecht and C. L. Colbourn, "Lower Bounds on Two-Terminal Network
Reliability". Discrete Applied Math, Vol 21. (1988), pp 185-198.

[1341 C. ,J. Colbourn and A. Ramanathan, "Bounds for All-Terminal Reliability by Arc-
Packing", Ars Combinatorica. Vol 23A. (1987), pp 229-236.

[135] C. J. Colbourn, "Edge-Packings of Graphs and Network Reliability", Discrete
Math, Vol 72, (1988), pp 49-61.

[136] C. ,J. Colbourn and D. D. Harms, "Bounding All-Terminal Reliability in
Computer Networks", Networks, Vol 18, (1988), pp 1-12.

[137] D. Torrieri. "Algorithms for Finding an Optimal Set of Short Disjoint Paths in a
Communication Network". Proceedings of the IEEE 1991 Military
Communications Conference (MILCOM '91), November, 1991.

[138] D. K. Wagner. "Disjoint (st)-Cuts in a Network", Networks. Vol 20. (1990),
pp 361-371.

S.13 SIMULATIONS AND MONTE CARLO METHODS

Studies of network performance have often used Monte Carlo simulations to

approximate various network parameters and performance measures. the main problem

being the large number of sample trials necessary to obtain reliable estimates. This

apr. ch is not discussed in our study, but there are a number of recent references to

this topic that should be noticed. Noreover. it is possible to model some statistically

dependent component failures with these methods.

[1391 G.S. Fishman. "A Comparison of Four Nlonte Carlo lethods for Estimating the
Probability of .st-connectedness". IEEE Transactions on Reliabilty, Vol 35
(19S6). pp 145-154.

r14 0 1 G.S. Fishman. "A NIonte Carlo Sampling Plan for Estimating Network
Reliability". Operations Research. \'ol 34. (1986). pp 381-594.

'14 11 G.S. Fishman. "Estimating the st-Reliability Function Using Importance and
Stratified Sampling". Operations Research. Vol 37. (1989), pp 462-473.

83

References

[1421 G.S. Fishman, "A Monte Carlo Sampling Plan for Estimating Reliability
Parameters and Related Functions". Networks, Vol 17, (1987), pp 169-186.

[1431 R. M. Karp and M.I. G. Lubv. "Monte-Carlo Algorithms for Enumeration and
Reliability Problems", Proc IEEE 24th Annual Symposium on Foundations of
Computer Science. November 7-9. Tuscon. Arizona. pp 56-64.

[144) P. Kubat, "Estimation of Reliability for Communication/Computer Networks -
Simulation/Analytic Approach". IEEE Transactions on Communications.
Vol 37, (1989)., pp 927-933.

[143] L. D. Nel and C. J. Colbourn. "Combirn;ng Monte Carlo Estimates and Bounds for
Network Reliability", Networkj. Vol 20, (1990). pp 277-298.

8.16 CONNECTIVITY FACTORS

The NCF (node connectivity factor) and the LCF (link connectivity factor) were

introduced in the papers cited below as possible alternatives to the usual reliability

measure. They are indicators of how close the network is to being totally disconnected.

Unfortunately, the NCF at least is computationally difficult to compute and does not

seem to be amenable to simplifying techniques such as factorization or edge reduction

used by other methods. Thus it is not vet clear how useful a concept this will prove to

be, although if these connectivity factors are available they can be used to identify the

most vulnerable components of the network and to adapt the network so as to equalize

the vulnerability over its components.

[146] K. T. Newport and M. A. Schroeder, "Network Survivability through
Connectivity Optimization". Proceedingsof the 1987 IEEE International
Conference on Communicatzons. Vol 1. pp 471-477.

[147] K. T. Newport and P. Varshnev. "Design of Communications Networks Under
Performance Constraints". IEEE Transactions on Reliability, Vol 40. (1991), pp
443-439.

[148] K. T. Newport and M. A. Schroeder. "Techniques for Evaluating the Nodal
Survivability of Large Networks-. Proceedings of the IEEE 1990 Military
Communications Conference (MILCOM '90), Monterey. California,
pp 1108-1113.

[149] K. T. Newport. I. A. Schroeder. and G. M. Whittaker. "A Knowledge Based
Approach to the Computation of Network Nodal Survivability". Proceedings of
the IEEE 1990 Military Commnic ations Conference (MILCOM '90). Monterey,
California. pp 1114-1119.

'130] M. A. Schroeder and K. T. Newport. "Tactical Network Survivability through
Connectivity Optimization". Proccedingsof the 1987 Military Communications
Conference (MIT COM '87), Monterey. California. Vol 2. pp 590-597.

[151] G. M. Whittaker. "A Knowledge-Based Design Aid for Survivable Tactical
Networks". Proceedings of the IEEE 1990 Military Communzcations Conference

(MILCOM '90), Monterey. California. Sect 53.5.

S4

References

[152] M. A. Schroeder and K. T. Newport, "Enhanced Network Survivability Through
Balanced Resource Criticality". Proceedings of the IEEE 1989 Military
Communications Conference (MILCOM '89), Boston. Massachusetts, Sect 38.4.

8.17 GRAPH DIAMETER AND CONNECTIVITY

The papers cited below are concerned with some aspects of graph connectivity

other than the usual path-oriented one, primarily with those deriving from the notion of

the diameter of a graph (i.e., the maximum node-to-node hop distance across the graph)

or the average node-to-node hop distance. Of special interest here is the notion of

leverage, as described in the papers of Bagga et al., which is a general method of

quantifying changes in graph invariants due to the loss of some network components.

[153] K. S. Bagga. L. W. Beineke. M. J. Lipman, R. E. Pippert, "The Concept of
Leverage in Network Vulnerability", Conference on Graph Theory, Kalamazoo,
Michigan, (1988), pp 29-39.

[154] K. S. Bagga. L. W. Beineke. M. J. Lipman, R. E. Pippert. "Explorations into
Graph Vulnerability", Conference on Graph Theory, Kalamazoo, Michigan,
(1988). pp 143-158.

[155] D. Bienstock and E. Gyori. "Average Distance in Graphs with Removed
Elements", Journal of Graph Theory, Vol 12. (1988), pp 375-390.

[156] F. T. Boesch and I. T. Frisch, "On the Smallest Disconnecting Set in a Graph",
IEEE Transactions on Circuit Theory, Vol 15, (1986), pp 286-288.

[157] F. Buckley and M. Lewinter. "A Note on Graphs with Diameter preserving
Spanning Trees". Journal of Graph Theory, Vol 12, (1988), pp 525-528.

[158] F. R. K. Chung, "TI Average Distance and the Independence Number", Journal
of Graph Theory, Voi 12, (1988). pp 229-235.

[159] G. Exoo. "On a Measure of Communication Network Vulnerability", Networks.
Vol 12, (1982), pp 405-409.

[160] 0. Favaron. M. Kouider. and M. Makeo. -Edge-Vulnerability and Mean
Distance". Networks, Vol 19, (1989), pp 493-509.

[161] F. Harary, F. T. Boesch. and J. A. Kabell. "Graphs as Models of Communication
Network Vulnerability: Connectivity and Persistence". Networks, Vol 11 (1981),
pp 57-63.

[162] F. Harary. -'Conditional Connectivity", Networks. Vol 13, (1983), pp 347-357.

[163] S. M. Lee. "'Design of c-invariant Networks". Congressus Numer., Vol 65 (1988),
pp 105-102.

[164] 0. R. Oellermann. "'Conditional Graph Connectivity Relative to Hereditary
Properties". Networks. Vol 21, (1991), pp 245-255.

[165] J. Plesnik, "On the Sum of All Distances in a Graph or Digraph". Journal of
Graph Theory, Vol S. (1984). pp 1-21.

85

References

[1661 A. A. Schoone, H. L. Bodlaender, and J. van Leeuwer, "Diameter Increase Caused
by Edge Deletion", Journal of Graph Theory, Vol 11, (1987), pp 409-427.

8.18 OTHER MEASURES OF VULNERABILITY

The remaining references are concerned with a number of other graph invariants
that have an obvious connection with the notions of vulnerability and survivability of

communications networks. The main concepts here are those of dominance,

independence, and covering of a graph with respect to either a set of nodes or a set of
edges of the underlying graph. These quantities have already been applied to problems

involving networks used in scheduling and service facilities, though their applications

and usefulness to communications networks remains to be determined. Also, the

calculation of some of these quantities can be NP-hard (some in the deterministic
sense, others from the probabilistic point of view). This is also an area of very active

research.

[167] M. 0. Ball, J. S. Provan, and D. R. Shier, "Reliability Covering Problems",
Networks, Vol 21, (1991), pp 345-357.

[168] L. Caccetta, "Vulnerability in Communication Networks", Networks. Vol 14
(1984), pp 141-146.

[169] L. L. Doty, "Extremal Connectivity and Vulnerability in Graphs", Networks,
Vol 19, (1989). pp 73-78.

[170] T. J. Ferguson, J. H. Cozzens. and C. Cho, "SDI Network Connectivity
Optimization", Proceedings of the IEEE 1990 Military Communications
Conference (MILCOM '90), Monterey, California, Sect 53.1.

[171] J. F. Fink, M. S. Jacobson, L. F. Kinch, and J. Roberts, "The Bondage Number
of a Graph", Discrete Math., Vol 86, (1990), pp 47-57.

[172] G. Gunther, "Neighbor-Connectedness in Regular Graphs", Discrete Applied
Math.. Vol 11, (1985), pp 233-242.

[173j G. Gunther. B. L. Hartnell, and R. Nowakowski, "Neighbor-Connected Graphs
and Projective Planes". Networks, Vol 17. (1987), pp 241-247.

[174] P. L. Hammer, "Cut-threshold Graphs", Disrete Applied Math., Vol 30. (1991),
pp 163-179.

[175] A. M. Hobbs, 'Computing Edge-Toughness and Fractional Arboricity",
Contemporary Mathematics, American Mathematical Society, (1989), pp 89-106.

[176] T. Z. Jiang, "A New Definition on Survivability of Communication Networks",
Proceedings of the IEEE 1991 Military Communicatzons Conference
(MILCOM'91), November. 1991.

[177] L. M. Lesniak and R. E. Pippert. 'On the Edge-Connectivity Vector of a Graph",
Networks. Vol 19. (1989). pp 667-671.

86

References

[178] Z. Miller and D. Pritikin, "On the Separation Number of a Graph", Networks,
Vol 19, (1989), pp 651-666.

[179] L. Wu and P. K. Varshney, "On Survivability Measures for Military Networks",
Proceedings of the IEEE 1990 Military Communications Conference (MILCOM
'90), Monterey, California, pp 1120-1124.

87

